首页 > 论文 > 中国激光 > 45卷 > 10期(pp:1005003--1)

用于光束周期性调制补偿的相位载波技术研究

Study on Phase Carrier Technology to Compensate for the Spatial Periodic Modulation of Beam

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对影响高功率激光系统输出性能的空间周期性调制, 提出并分析讨论了一种新的基于相位载波灵活补偿控制的方法。首先, 理论分析了本文方法对空间周期性调制的空间频率的控制, 通过改变相位载波的幅度调节空间频率的强度, 并且对于振幅型周期性调制, 相位载波的周期可以改变空间频率强度极大值的位置。然后, 进行了相位载波对振幅型周期性调制的空间频率影响的实验, 实验结果和数值模拟验证了该方法的可行性, 并对加载相位载波前后的输出近场图及对应的一维平均功率谱密度曲线进行了对比, 加载相位载波后, 空间频率的峰值下降了一个量级, 并降低到了本底值附近。该方法为高功率激光系统中敏感的空间周期性调制的补偿和控制提供了一个新的思路。

Abstract

For the spatial periodic modulation that affects the output performance of high power laser systems, a novel method of compensating and controlling the spatial periodic modulation based on phase carrier is proposed and analyzed. First, the theoretical analysis shows that this method is able to control the spatial frequency of the spatial periodic modulation. The intensity of the spatial frequency is modulated by changing the magnitude of the phase carrier, and for the amplitude-type spatial periodic modulation, the period of the phase carrier can change the position of the maximum intensity of the spatial frequency. Then, the experiment on the effect of phase carrier on the amplitude-type spatial periodic modulation is carried out. The feasibility of the method is verified by experimental results and numerical simulations. The output near-field beam and the corresponding one-dimensional average power spectral density curve before and after the phase carrier modulation are compared. It is found that the peak value of the spatial frequency drops by an order of magnitude and decreases to near the background value after phase carrier modulation in the experiment. This method provides a new way to compensate and control the sensitive spatial periodic modulation in high power laser systems.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201845.1005003

所属栏目:光束传输与控制

基金项目:国家自然科学基金(11774364)、中国科学院国际伙伴计划(GJHZ1871)

收稿日期:2018-03-21

修改稿日期:2018-05-16

网络出版日期:2018-05-21

作者单位    点击查看

高雅茹:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学, 北京 100049
刘德安:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
杨爱华:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学, 北京 100049
张盼:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学, 北京 100049
朱健强:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800

联系人作者:刘德安(liudean@siom.ac.cn)

【1】Campillo A J, Shapiro S L, Suydam B R. Periodic breakup of optical beams due to self-focusing[J]. Applied Physics Letters, 1973, 23(11): 628-630.

【2】Fleck J, Morris J, Bliss E. Small-scale self-focusing effects in a high power glass laser amplifier[J]. IEEE Journal of Quantum Electronics, 1978, 14(5): 353-363.

【3】Bespalov V I, Talanov V I. Filamentarystructure of light beams in nonlinear liquids[J]. Journal of Experimental and Theoretical Physics Letters, 1966, 3: 307-310.

【4】Gao Y R, Liu D A, Yang A H, et al. Compensation for the spatial periodic modulation of the near-field beam with an improved iterative weight-based method[J]. Optik, 2017, 143: 59-65.

【5】Simmons W, Hunt J, Warren W. Light propagation through large laser systems[J]. IEEE Journal of Quantum Electronics, 1981, 17(9): 1727-1744.

【6】Hunt J T, Renard P A, Simmons W W. Improved performance of fusion lasers using the imaging properties of multiple spatial filters[J]. Applied Optics, 1977, 16(4): 779-782.

【7】Hunt J T, Glaze J A, Simmons W W, et al. Suppression of self-focusing through low-pass spatial filtering and relay imaging[J]. Applied Optics, 1978, 17(13): 2053-2057.

【8】Dimakov S A, Zavgorodneva S I, Koval′chuk L V, et al. Investigation of the threshold of formation of a plasma screening radiation in a spatial filter[J]. Soviet Journal of Quantum Electronics, 1989, 19(6): 803-805.

【9】Auerbach J M, Holmes N C, Hunt J T, et al. Closure phenomena in pinholes irradiated by Nd laser pulses[J]. Applied Optics, 1979, 18(14): 2495-2499.

【10】Murray J E, Milam D, Boley C D, et al. Spatial filter pinhole development for the National Ignition Facility[J]. Applied Optics, 2000, 39(9): 1405-1420.

【11】Boley C D, Estabrook K G, Auerbach J M, et al. Modeling of laser knife-edge and pinhole experiments[J]. Proceedings of SPIE, 1999, 3492: 524-536.

【12】Celliers P M, Estabrook K G, Wallace R J, et al. Spatial filter pinhole for high-energy pulsed lasers[J]. Applied Optics, 1998, 37(12): 2371-2378.

【13】Zhang X, Zhou W, Hu D X, et al. Application of cone pinhole in high energy solid-state laser system[J]. High Power Laser and Particle Beams, 2012, 24(7): 1700-1704.
张鑫, 周维, 胡东霞, 等. 高功率固体激光器锥形空间滤波孔应用[J]. 强激光与粒子束, 2012, 24(7): 1700-1704.

【14】Xiong H, Yuan X, Zhang X, et al. Performance of a simplified slit spatial filter for large laser systems[J]. Optics Express, 2014, 22(18): 22211-22219.

【15】Xiong H, Yu T C, Gao F, et al. Filtering characteristics of a three-lens slit spatial filter for high-power lasers[J]. Optics Letters, 2017, 42(22): 4593-4595.

【16】Wan J, Xiong H, Zhang X, et al. Beam propagation characteristics in four-cylindrical-lens slit spatial filter[J]. Acta Optica Sinica, 2015, 35(9): 0907001.
万晶, 熊晗, 张翔, 等. 基于四柱透镜结构的线聚焦型空间滤波器光束传输特性研究[J]. 光学学报, 2015, 35(9): 0907001.

【17】Xiong H. Application of two-lens slit spatial filter in high power lasers[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091408.
熊晗. 高功率激光器中两镜型线聚焦空间滤波器的应用[J]. 激光与光电子学进展, 2017, 54(9): 091408.

【18】Sinha S, Dasgupta K, Sasikumar S, et al. Saturable-absorber-based spatial filtering of high-power laser beams[J]. Applied Optics, 2006, 45(20): 4947-4956.

【19】Zheng G W, He Y L, Huang S H, et al. Low-pass spatial filtering for continuous-wave laser beam by transmission volume phase gratings[J]. Acta Optica Sinica, 2009, 29(4): 863-868.
郑光威, 何焰蓝, 黄水花, 等. 透射型体相位光栅对连续激光束的空间低通滤波[J]. 光学学报, 2009, 29(4): 863-868.

【20】Zhang Y, Wang Y Z, Qi H J, et al. Analysis on spatial filtering by reflecting combination device[J]. Acta Optica Sinica, 2015, 35(6): 0616002.
章瑛, 王胭脂, 齐红基, 等. 反射型组合器件的空间滤波分析[J]. 光学学报, 2015, 35(6): 0616002.

【21】Zhang Y, Yi K, Qi H J, et al. Design of phase-shifted Rugate thin film spatial filter[J]. Chinese Journal of Lasers, 2014, 41(10): 1007001.
章瑛, 易葵, 齐红基, 等. 相移Rugate薄膜空间滤波器的设计[J]. 中国激光, 2014, 41(10): 1007001.

【22】Cheng Y, Huang D J, Fan W. Beam shaping capability of amplitude spatial light modulator by electrical addressing[J]. Chinese Journal of Lasers, 2017, 44(4): 0405001.
程煜, 黄大杰, 范薇. 电寻址振幅型空间光调制器的光束整形能力[J]. 中国激光, 2017, 44(4): 0405001.

【23】Heebner J, Borden M, Miller P, et al. A programmable beam shaping system for tailoring the profile of high fluence laser beams[J]. Proceedings of SPIE, 2010, 7842: 78421C.

【24】Heebner J, Borden M, Miller P, et al. Programmable beam spatial shaping system for the National Ignition Facility[J]. Proceedings of SPIE, 2011, 7916: 79160H.

【25】Barczys M, Bahk S W, Spilatro M, et al. Deployment of a spatial light modulator-based beam-shaping system on the OMEGA EP laser[J]. Proceedings of SPIE, 2013, 8602: 86020F.

【26】Bahk S W, Fess E, Kruschwitz B E, et al. A high-resolution, adaptive beam-shaping system for high-power lasers[J]. Optics Express, 2010, 18(9): 9151-9163.

【27】Bagnoud V, Zuegel J D. Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator[J]. Optics Letters, 2004, 29(3): 295-297.

【28】Elson J M, Bennett J M. Calculation of the power spectral density from surface profile data[J]. Applied Optics, 1995, 34(1): 201-208.

引用该论文

Gao Yaru,Liu Dean,Yang Aihua,Zhang Pan,Zhu Jianqiang. Study on Phase Carrier Technology to Compensate for the Spatial Periodic Modulation of Beam[J]. Chinese Journal of Lasers, 2018, 45(10): 1005003

高雅茹,刘德安,杨爱华,张盼,朱健强. 用于光束周期性调制补偿的相位载波技术研究[J]. 中国激光, 2018, 45(10): 1005003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF