首页 > 论文 > 中国激光 > 45卷 > 10期(pp:1001005--1)

基于空间光调制器的飞秒激光双模式快速加工

Femtosecond Laser Dual-Mode Rapid Fabrication Based on Spatial Light Modulator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了基于空间光调制器(SLM)的飞秒激光双模式双光子聚合加工方式。通过在空间光调制器上加载相应的全息图, 可以实现焦点控制扫描加工和图形化曝光加工模式。 这两种加工模式不但可以保证加工质量, 而且能够提高双光子聚合加工的效率。采用这两种不同的模式, 分别加工了里约奥运会会徽和不同形状的图案, 验证了这两种加工方式在微纳加工领域的可行性。

Abstract

The femtosecond laser dual-mode two-photon polymerization fabrication method based on a spatial light modulator (SLM) is proposed. The fabrication modes of focus control scanning and patterned exposure are realized by the load of the corresponding holograms on the SLM. These two fabrication modes not only ensure the fabrication quality, but also increase the fabrication efficiency of two-photon polymerization. By these two different modes, the Rio Olympic emblem and patterns with different shapes are fabricated, respectively. The feasibilities of these two fabrication methods in the micro-nano fabrication field are verified.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/cjl201845.1001005

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金(51275502,61475149,51405464,91223203,91423103,11204250)、中国青年千人计划、安徽省自然科学基金(1408085ME104)、中央高校基本科研业务费专项资金(WK6030000004)

收稿日期:2018-03-28

修改稿日期:2018-04-25

网络出版日期:2018-05-22

作者单位    点击查看

吴培超:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026
张晨初:合肥工业大学工业与装备技术研究院, 安徽 合肥 230009
杨亮:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026
李家文:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026
胡衍雷:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026
吴东:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026

联系人作者:张晨初(nanozcc@ustc.edu.cn); 吴培超(peichaow@mail.ustc.edu.cn); 吴东(dongwu@ustc.edu.cn);

【1】Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit[J]. Laser & Photonics Reviews, 2012, 7(1): 22-44.

【2】Wu D, Chen Q D, Niu L G, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on a Chip, 2009, 9(16): 2391-2394.

【3】Lin C L, Wang I, Dollet B, et al. Velocimetry microsensors driven by linearly polarized optical tweezers[J]. Optics Letters, 2006, 31(3): 329-331.

【4】Chen Q D, Wu D, Niu L G, et al. Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization[J]. Applied Physics Letters, 2007, 91(17): 171105.

【5】Cao X W, Zhang L, Yu Y S, et al. Application of micro-optical components fabricated with femtosecond laser[J]. Chinese Journal of Lasers, 2017, 44(1): 0102004.
曹小文, 张雷, 于永森, 等. 飞秒激光制备微光学元件及其应用[J]. 中国激光, 2017, 44(1): 0102004.

【6】Wang J, Xia H, Xu B B, et al. Remote manipulation of micronanomachines containing magnetic nanoparticles[J]. Optics Letters, 2009, 34(5): 581-583.

【7】Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

【8】Wu D, Wu S Z,Niu L G, et al. High numerical aperture microlens arrays of close packing[J]. Applied Physics Letters, 2010, 97(3): 031109.

【9】Sun H B, Kawata S. Two-photon laser precision microfabrication and its applications to micro-nano devices and systems[J]. Journal of Lightwave Technology, 2003, 21(3): 624-633.

【10】Lim T W, Son Y, Jeong Y J, et al. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length[J]. Lab on a Chip, 2011, 11(1): 100-103.

【11】Wang J, He Y, Xia H, et al. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization[J]. Lab on a Chip, 2010, 10(15): 1993-1996.

【12】Chong T C, Hong M H, Shi L P. Laser precision engineering: From microfabrication to nanoprocessing[J]. Laser & Photonics Reviews, 2010, 4(1): 123-143.

【13】Gittard S D, Nguyen A, Obata K, et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomedical Optics Express, 2011, 2(11): 3167-3178.

【14】Kelemen L, Valkai S, Ormos P. Parallel photopolymerisation with complex light patterns generated by diffractive optical elements[J]. Optics Express, 2007, 15(22): 14488-14497.

【15】Xu B, Du W Q, Li J W, et al. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication[J]. Scientific Reports, 2016, 6: 19989.

【16】Matsuo S, Juodkazis S, Misawa H. Femtosecond laser microfabrication of periodic structures using a microlens array[J]. Applied Physics A, 2005, 80(4): 683-685.

【17】Kato J, Takeyasu N, Adachi Y, et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 2005, 86(4): 044102.

【18】Sakakura M, Sawano T, Shimotsuma Y, et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam[J]. Optics Express, 2010, 18(12): 12136-12143.

【19】Jenness N J, Wulff K D, Johannes M S, et al. Three-dimensional parallel holographic micropatterning using a spatial light modulator[J]. Optics Express, 2008, 16(20): 15942-15948.

【20】Lin H, Gu M. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam[J]. Applied Physics Letters, 2013, 102(8): 084103.

【21】Zhang S J, Li Y, Liu Z P, et al. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum[J]. Applied Physics Letters, 2014, 105(6): 061101.

【22】Wang A D, Jiang L, Li X W, et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses[J]. Advanced Materials, 2015, 27(40): 6238-6243.

【23】Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science & Applications, 2017, 6(7): e17011.

【24】Yang L, Qian D D, Xin C, et al. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam[J]. Optics Letters, 2017, 42(4): 743-746.

【25】Zhang C C, Hu Y L, Li J W, et al. A rapid two-photon fabrication of tube array using an annular Fresnel lens[J]. Optics Express, 2014, 22(4): 3983-3990.

【26】Liu L P, Zhang S J, Yang H, et al. Fabrication of double-helix microstructures by two-photon polymerization[J]. Chinese Journal of Lasers, 2017, 44(1): 0102006.
刘力谱, 张世杰, 杨宏, 等. 双螺旋微结构的双光子聚合制备[J]. 中国激光, 2017, 44(1): 0102006.

【27】Weiner A M. Femtosecond pulse shaping using spatial light modulators[J]. Review of Scientific Instruments, 2000, 71(5): 1929-1960.

【28】Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 2007, 15(4): 1913-1922.

【29】Zhang C C, Hu Y L, Li J W, et al. An improved multi-exposure approach for high quality holographic femtosecond laser patterning[J]. Applied Physics Letters, 2014, 105(22): 221104.

引用该论文

Wu Peichao,Zhang Chenchu,Yang Liang,Li Jiawen,Hu Yanlei,Wu Dong. Femtosecond Laser Dual-Mode Rapid Fabrication Based on Spatial Light Modulator[J]. Chinese Journal of Lasers, 2018, 45(10): 1001005

吴培超,张晨初,杨亮,李家文,胡衍雷,吴东. 基于空间光调制器的飞秒激光双模式快速加工[J]. 中国激光, 2018, 45(10): 1001005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF