首页 > 论文 > 中国激光 > 45卷 > 10期(pp:1007001--1)

基于激光诱导超声换能器的磁声电成像研究

Magneto-Acousto-Electrical Tomography Based on Laser-Induced Ultrasound Transducers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

生物组织的电学特征对肿瘤的早期诊断具有重要意义。通过测量样品的洛伦兹力效应, 磁声电成像可以检测到生物组织电导率的变化, 从而实现肿瘤组织的早期诊断。现有的磁声电成像采用传统的压电超声换能器产生超声激励, 为了避免静磁场对超声激励系统的干扰, 这种方法要求压电超声换能器必须远离被测样品, 从而导致超声探头和被测样品间存在较大的超声传播距离, 不利于在临床中进一步研究。首先设计了基于光声热弹效应的激光诱导超声换能器, 这种光学超声换能器采用优化的炭黑和聚二甲基硅氧烷复合结构, 减小了复合膜厚度, 有望产生高频和高强度超声信号; 然后对优化的复合膜激光诱导超声换能器的超声特性进行分析, 并利用激光诱导超声换能器进行磁声电成像实验。结果表明:激光诱导超声换能器产生的超声信号具有与压电换能器产生的超声信号可比的压强幅度和超声带宽, -6 dB超声带宽接近7.5 MHz, 产生的超声强度达到2.5 MPa; 在磁场环境中, 激光诱导超声换能器能提供一种无电子结构的超声激励方式, 有效减小了磁声电成像中超声激励源的电磁干扰, 具有良好的电磁兼容特性。

Abstract

Electrical characteristics of biological tissues are significant for early diagnosis of tumor tissues. Through detecting the Lorentz force effect of the samples, magneto-acousto-electrical tomography is confirmed to have ability to implement early diagnosis of tumor tissues with recognition of changes in electrical conductivity of organisms. In all previous work on magneto-acousto-electrical tomography, incident ultrasonic pulses are generated from conventional piezoelectric transducers. To avoid the electromagnetic interference to the ultrasonic excitation system, the piezoelectric transducer is required to be placed far away from the detected sample. However, the long distance of ultrasonic propagation between the ultrasonic transducer and the sample limits further clinical research. Firstly, laser-induced ultrasound transducers based on photoacoustic effect are proposed. The optic ultrasonic transducers are polymer-nanomaterial composites formed by carbon black and polydimethylsiloxane, which are promising to generate high-frequency and high-intensity ultrasonic signals through decreasing the thickness of composite films. The acoustic fields generated by optimized laser-induced ultrasound transducers are then characterized, and laser-induced ultrasound transducers are applied in the magneto-acousto-electrical tomography experiment. The results indicate that the output pressure and bandwidth of the ultrasonic signals generated by the laser-induced ultrasound transducers are similar to or better than those generated by the piezoelectric transducers. -6 dB frequency bandwidth and acoustic intensity of the laser-induced ultrasound transducers are measured to be about 7.5 MHz and 2.5 MPa, respectively. Due to the absence of electronics and metal in the laser-induced ultrasound transducers, acoustic sources generated by the laser-induced ultrasound transducers are compatible with magneto-acousto-electrical tomography and insensitive to electromagnetic interference.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/cjl201845.1007001

所属栏目:生物医学光子学与激光医学

基金项目:国家自然科学基金(61771448,61271424)、中国科学院科研装备研制项目(YZ201507); 中国科学院青年创新促进会人才项目(2017179)

收稿日期:2018-04-02

修改稿日期:2018-04-27

网络出版日期:2018-05-04

作者单位    点击查看

丁广鑫:中国科学院电工研究所, 北京 100190中国科学院大学, 北京 100049
夏慧:中国科学院电工研究所, 北京 100190
刘国强:中国科学院电工研究所, 北京 100190
李元圆:中国科学院电工研究所, 北京 100190中国科学院大学, 北京 100049
王丽丽:中国科学院电工研究所, 北京 100190中国科学院大学, 北京 100049

联系人作者:夏慧(xiahui@mail.iee.ac.cn)

【1】Hunter A J, Drinkwater B W, Wilcox P D. Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries[J]. NDT & E International, 2010, 43(2): 78-85.

【2】le Jeune L, Robert S, Lopez Villaverde E, et al. Plane Wave Imaging for ultrasonic non-destructive testing: generalization to multimodal imaging[J]. Ultrasonics, 2016, 64: 128-138.

【3】Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(1): 102-119.

【4】Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications[J]. Nature Reviews Drug Discovery, 2005, 4(3): 255-260.

【5】Guo L, Liu G Q, Xia H. Magneto-acousto-electrical tomography with magnetic induction for conductivity reconstruction[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(9): 2114-2124.

【6】Zhou Y, Ma Q Y, Guo G P, et al. Magneto-acousto-electrical measurement based electrical conductivity reconstruction for tissues[J]. IEEE Transactions on Biomedical Engineering, 2017, 65(5): 1086-1094.

【7】Haider S, Hrbek A, Xu Y. Magneto-acousto-electrical tomography: a potential method for imaging current density and electrical impedance[J]. Physiological Measurement, 2008, 29(6): S41-S50.

【8】Xu Y, Haider S, Hrbek A. Magneto-acousto-electrical tomography: a new imaging modality for electrical impedance[C]∥13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, August 29 - September 2, 2007, Graz, Austria. New York: Springer, 2007: 292-295.

【9】Buma T, Spisar M, O′Donnell M. High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film[J]. Applied Physics Letters, 2001, 79(4): 548-550.

【10】Baac H W, Ok J G, Park H J, et al. Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation[J]. Applied Physics Letters, 2010, 97(23): 234104.

【11】Lee S H, Park M A,Yoh J J, et al. Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation[J]. Applied Physics Letters, 2012, 101(24): 241909.

【12】Hsieh B Y, Kim J, Zhu J D, et al. A laser ultrasound transducer using carbon nanofibers-polydimethylsiloxane composite thin film[J]. Applied Physics Letters, 2015, 106(2): 021902.

【13】Shi Y J, Xing D. Study on photoacoustic effect in nanoscale and photoacoustic conversion mechanism of nanoprobes[J]. Chinese Journal of Lasers, 2018, 45(2): 0207026.
石玉娇, 邢达. 纳米尺度下的光声效应及纳米探针光声转换机制研究[J]. 中国激光, 2018, 45(2): 0207026.

【14】Wang C, Dong X N, Cai G, et al. Photoacoustic elastography for biological tissue[J]. Chinese Journal of Lasers, 2018, 45(3): 0307010.
王成, 董肖娜, 蔡干, 等. 组织光声弹性成像[J]. 中国激光, 2018, 45(3): 0307010.

【15】Cox B T, Beard P C. Fast calculation of pulsed photoacoustic fields in fluids using k-space methods[J]. The Journal of the Acoustical Society of America, 2005, 117(6): 3616-3627.

【16】Hou Y, Kim J S, Ashkenazi S, et al. Optical generation of high frequency ultrasound using two-dimensional gold nanostructure[J]. Applied Physics Letters, 2006, 89(9): 093901.

【17】Zou X T, Wu N, Tian Y, et al. Broadband miniature fiber optic ultrasound generator[J]. Optics Express, 2014, 22(15): 18119-18127.

【18】Baac H W, Ok J G, Maxwell A, et al. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy[J]. Scientific Reports, 2012, 2: 989.

【19】Noimark S, Colchester R J, Blackburn B J, et al. Carbon-nanotube-PDMS composite coatings on optical fibers for all-optical ultrasound imaging[J]. Advanced Functional Materials, 2016, 26(46): 8390-8396.

【20】Xia H, Liu G Q, Zeng X P. Experimental study of magneto-acousto-electrical tomography[C]∥2011 Second International Conference on Mechanic Automation and Control Engineering, July 15-17, 2011, Inner Mongolia, China. Washington, D. C.: IEEE Computer Society, 2011: 1310-1311.

【21】Guo L, Liu G Q, Xia H, et al. Conductivity reconstruction algorithms and numerical simulations for magneto-acousto-electrical tomography with piston transducer in scan mode[J]. Chinese Physics B, 2014, 23(10): 275-282.

【22】Davies S J, Edwards C, Taylor G S, et al. Laser-generated ultrasound: its properties, mechanisms and multifarious applications[J]. Journal of Physics D, 1993, 26(3): 329-348.

【23】Hou Y, Ashkenazi S, Huang S W, et al. Improvements in optical generation of high-frequency ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(3): 682-686.

【24】Li Y Y, Liu G Q, Xia H, et al. Numerical simulations and experimental study of magneto-acousto-electrical tomography with plane transducer[J]. IEEE Transactions on Magnetics, 2018, 54(3): 5100704.

引用该论文

Ding Guangxin,Xia Hui,Liu Guoqiang,Li Yuanyuan,Wang Lili. Magneto-Acousto-Electrical Tomography Based on Laser-Induced Ultrasound Transducers[J]. Chinese Journal of Lasers, 2018, 45(10): 1007001

丁广鑫,夏慧,刘国强,李元圆,王丽丽. 基于激光诱导超声换能器的磁声电成像研究[J]. 中国激光, 2018, 45(10): 1007001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF