首页 > 论文 > 中国激光 > 45卷 > 10期(pp:1001002--1)

飞秒激光诱导负电晕研究

Femtosecond Laser Guided Negative Corona

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过数值模拟光丝与负电晕相互作用过程中的空间电场分布,实验观测飞秒激光诱导负电晕放电现象, 研究了空气中飞秒激光光丝与针-板电极结构中产生的负电晕之间的相互作用的规律和机理。模拟和实验结果表明,在相互作用过程中, 光丝末端出现高于雪崩电离阈值的空间电场分布, 产生了负电晕放电现象。通过调控光丝长度可以控制负电晕的作用区域, 由此提出一种全光诱导负电晕的新方法。

Abstract

The investigation on the interaction between femtosecond laser filaments in air and negative corona discharge in the needle-plane electrode is reported. The spatial distribution of electric field of the interaction is theoretically simulated and the phenomena of laser guided negative corona is observed experimentally during the interaction process. The setup is established to understand this process. Both the simulation and experiment results show that the electric field distributions with the strength higher than the threshold for avalanche ionization do exist during the interaction process. As a consequence negative corona is guided at the end of laser filament. The negative corona area can be altered through the control of filament length, which provides a new method to optically guide negative corona.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201845.1001002

所属栏目:激光器件与激光物理

基金项目:中国科学院百人计划、中国科学院战略性先导科技专项(B类)(XDB1601)、中国科学院国际合作重点项目(181231KYSB20160045)

收稿日期:2018-04-08

修改稿日期:2018-04-26

网络出版日期:2018-05-11

作者单位    点击查看

张健浩:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学, 北京 100049
王铁军:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学, 北京 100049
朱忠彬:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800上海大学理学院, 上海 200444
刘尧香:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800同济大学理学部, 上海 200092
陈娜:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学, 北京 100049
李儒新:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学, 北京 100049

联系人作者:王铁军(tiejunwang@siom.ac.cn); 李儒新(ruxinli@mail.shcnc.ac.cn); 张健浩(zhangjianhao@siom.ac.cn);

【1】Hu X Y, Zhong F C, Deng J, et al. Ultra-short intense laser pulse propagating in atmosphere: behavior of self-focusing[J]. Acta Optica Sinica, 2001, 21(6): 641-646.
胡雪原, 钟方川, 邓建, 等. 超短强激光脉冲在大气传播中的自聚焦行为[J]. 光学学报, 2001, 21(6): 641-646.

【2】Chin S L, Wang T J, Marceau C, et al. Advances in intense femtosecond laser filamentation in air[J]. Laser Physics, 2012, 22(1): 1-53.

【3】Akozbek N, Bowden C M, Talebpour A, et al. Femtosecond pulse propagation in air: variational analysis[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 61(4 Pt B): 4540-4549.

【4】Wang T J, Yuan S, Chen Y P, et al. Toward remote high energy terahertz generation[J]. Applied Physics Letters, 2010, 97(11): 111108.

【5】D′Amico C, Houard A, Franco M, et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air[J]. Physical Review Letters, 2007, 98(23): 235002.

【6】Rohwetter P, Kasparian J, Stelmaszczyk K, et al. Laser-induced water condensation in air[J]. Nature Photonics, 2010, 4(7): 451-456.

【7】Ju J J, Liu J S, Wang C, et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber[J]. Optics Letters, 2012, 37(7): 1214-1216.

【8】Chen N, Liu Y X, Du S Z, et al. Research progress in applications of nanosecond and femtosecond laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050003.
陈娜, 刘尧香, 杜盛喆, 等. 纳秒、飞秒激光诱导击穿光谱技术的应用研究进展[J]. 激光与光电子学进展, 2016, 53(5): 050003.

【9】Kasparian J, Rodriguez M, Méjean G, et al. White-light filaments for atmospheric analysis[J]. Science, 2003, 301(5629): 61-64.

【10】Ladouceur H D, Baronavski A P, Lohrmann D, et al. Electrical conductivity of a femtosecond laser generated plasma channel in air[J]. Optics Communications, 2001, 189(1/2/3): 107-111.

【11】Théberge F, Liu W W, Simard P T, et al. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(3 Pt 2): 036406.

【12】Kasparian J, Ackermann R, André Y B,et al. Electric events synchronized with laser filaments in thunderclouds[J]. Optics Express, 2008, 16(8): 5757-5763.

【13】Théberge F, Daigle J F, Kieffer J C, et al. Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments[J]. Scientific Reports, 2017, 7: 40063.

【14】Sugiyama K, Fujii T, Miki M, et al. Laser-filament-induced corona discharges and remote measurements of electric fields[J]. Optics Letters, 2009, 34(19): 2964-2966.

【15】Sugiyama K, Fujii T, Miki M, et al. Submicrosecond laser-filament-assisted corona bursts near a high-voltage electrode[J]. Physics of Plasmas, 2010, 17(4): 043108.

【16】Schmitt-Sody A, French D, White W, et al. The importance of corona generation and leader formation during laser filament guided discharges in air[J]. Applied Physics Letters, 2015, 106(12): 124101.

【17】Wang T J, Wei Y X, Liu Y X, et al. Direct observation of laser guided corona discharges[J]. Scientific Reports, 2015, 5: 18681.

【18】Schubert E, Mongin D, Produit T, et al. Shockwave-assisted laser filament conductivity[J]. Applied Physics Letters, 2017, 111(21): 211103.

【19】Arantchouk L, Honnorat B, Thouin E, et al. Prolongation of the lifetime of guided discharges triggered in atmospheric air by femtosecond laser filaments up to 130 μs[J]. Applied Physics Letters, 2016, 108(17): 173501.

【20】Point G, Arantchouk L, Thouin E, et al. Long-lived laser-induced arc discharges for energy channeling applications[J]. Scientific Reports, 2017, 7(1): 13801.

【21】Du S Z, Zhu Z B, Liu Y X, et al. Optimization design scheme of femtosecond laser induced corona discharge[J]. Chinese Journal of Lasers, 2017, 44(6): 0601009.
杜盛喆, 朱忠彬, 刘尧香, 等. 飞秒激光诱导电晕放电的优化设计方案[J]. 中国激光, 2017, 44(6): 0601009.

【22】Yan Z, Zhu D H. High voltage insulation technology[M]. Beijing: China Electric Power Press, 2002: 43-44.
严璋, 朱德恒. 高压电绝缘技术[M]. 北京: 中国电力出版社, 2002: 43-44.

【23】Chang J S, Lawless P A, Yamamoto T. Corona discharge processes[J]. IEEE Transactions on Plasma Science, 1991, 19(6): 1152-1166.

【24】Chen J, Davidson J H. Ozone production in the negative DC corona: the dependence of discharge polarity[J]. Plasma Chemistry & Plasma Processing, 2003, 23(3): 501-518.

【25】Du S, Zhu Z, Wang T J, et al. Laser guided ionic wind[OL]. 2018-01-21[2018-03-15]. https:∥arxiv.org/ftp/arxiv/papers/1801/1801.06778.pdf

【26】Antao D S, Staack D A, Fridman A, et al. Atmospheric pressure DC corona discharges: operating regimes and potential applications[J]. Plasma Sources Science and Technology, 2009, 18(3): 035016.

【27】Hogg M G,Timoshkin I V, Mcgregor S J, et al. Polarity effects on breakdown of short gaps in a point-plane topology in air[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1815-1822.

【28】Wu Z C, Zhang X J, Hu Y Z. Gas Discharge[M]. Beijing: National Defense Industry Press, 2012: 134-135.
武占成, 张希军, 胡有志. 气体放电[M]. 北京: 国防工业出版社, 2012: 134-135.

【29】Gallimberti I, Bacchiega G, Bondiou-Clergerie A, et al. Fundamental processes in long air gap discharges[J]. Comptes Rendus Physique, 2002, 3(10): 1335-1359.

【30】Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1): 73-75.

【31】Yang H, Zhang J, Li Y J, et al. Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 66(1 Pt 2): 016406.

【32】Tzortzakis S, Franco M A, André Y B, et al. Formation of a conducting channel in air by self-guided femtosecond laser pulses[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 60(4 Pt A): R3505-R3507.

引用该论文

Zhang Jianhao,Wang Tiejun,Zhu Zhongbin,Liu Yaoxiang,Chen Na,Li Ruxin. Femtosecond Laser Guided Negative Corona[J]. Chinese Journal of Lasers, 2018, 45(10): 1001002

张健浩,王铁军,朱忠彬,刘尧香,陈娜,李儒新. 飞秒激光诱导负电晕研究[J]. 中国激光, 2018, 45(10): 1001002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF