首页 > 论文 > 中国激光 > 45卷 > 10期(pp:1001003--1)

全光纤结构波长可调谐被动锁模掺铥光纤激光器

All-Fiber Wavelength-Tunable Passively Mode-Locked Thulium-Doped Fiber Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

波长为2 μm的中红外掺铥光纤激光器可广泛应用于激光医疗、人眼安全雷达、非金属材料加工、光电对抗等领域, 具有其他类型光纤激光器不可替代的重要作用。报道了一种全光纤结构波长可调谐被动锁模掺铥光纤激光器。该光纤激光器利用半导体可饱和吸收镜与高双折射率光纤环镜实现锁模皮秒脉冲与波长可调谐激光输出。高双折射率光纤环镜由2×2激光分束器和高双折射光纤组成, 实验中通过改变光纤环镜中高双折射光纤的温度, 得到了中心波长可调谐范围为1952~1967 nm, 调谐宽度为15 nm, 重复频率为 29 MHz, 最短脉冲宽度为6 ps的可调谐皮秒脉冲激光输出。

Abstract

The research on medium-infrared thulium-doped fiber lasers at 2 μm wavelength is widely used in the field of laser medical, eye-safe radar, non-metal material processing, and electro-optical countermeasure system, it has an irreplaceable role compared with other wavelength fiber lasers. An all-fiber wavelength-tunable passively mode-locked thulium-doped fiber laser is reported. This laser realizes picosecond pulses and tunable wavelength by using a semiconductor saturable absorber mirror and a high-birefringence fiber optical loop mirror. This high-birefringence fiber optical loop mirror consists of a 2×2 coupler with output ports spliced to a high-birefringence fiber. The tunable picosecond pulse laser output is obtained by changing the temperature of the high-birefringence fiber in a fiber optical loop mirror. The center wavelength tunable range is from 1952 to 1967 nm, the tuning width is 15 nm, the repetition rate is 29 MHz, and the shortest pulse width is 6 ps.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/cjl201845.1001003

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金青年项目(61505004)、北京市教委科技计划一般项目(KM201610005028)

收稿日期:2018-04-16

修改稿日期:2018-05-16

网络出版日期:2018-05-21

作者单位    点击查看

张怡静:北京工业大学激光工程研究院, 北京 100124
刘江:北京工业大学激光工程研究院, 北京 100124
王璞:北京工业大学激光工程研究院, 北京 100124

联系人作者:刘江(liujiang@bjut.edu.cn)

【1】Liu J, Liu C, Shi H X, et al. 203 W all-polarization maintaining picosecond thulium-doped all-fiber laser[J]. Acta Physica Sinica, 2016, 65(19): 194208.
刘江, 刘晨, 师红星, 等. 203 W全光纤全保偏结构皮秒掺铥光纤激光器[J]. 物理学报, 2016, 65(19): 194208.

【2】Swofford R L, Albrecht A C. Nonlinear spectroscopy[J]. Annual Review of Physical Chemistry, 1978, 29(1): 421-440.

【3】Rota-Rodrigo S, Ibaez I, López-Amo M. Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer[J]. Applied Physics B, 2013, 110(3): 303-308.

【4】Yan Z Y, Sun B, Li X H, et al. Widely tunable Tm-doped mode-locked all-fiber laser[J]. Scientific Reports, 2016, 6: 27245.

【5】Azimipour M, Pashaie R. Nonlinear optical signal processing on multiwavelength sensitive materials[J]. Optics Letters, 2013, 38(21): 4324-4326.

【6】Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424 : 831-838.

【7】Liu J, Xu J, Wang Q, et al. High-pulse-energy passively mode-locked 2.0 μm thulium-doped ultrafast all-fiber laser[J]. Chinese Journal of Lasers, 2012, 39(6): 0602009.
刘江, 徐佳, 王潜, 等. 高能量全光纤结构被动锁模2.0 μm掺铥超短脉冲光纤激光器[J]. 中国激光, 2012, 39(6): 0602009.

【8】Liu J, Tan F Z, Liu C, et al. Progress on high-power ultrashort-pulsed thulium-doped fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201003.
刘江, 谭方舟, 刘晨, 等. 高功率超短脉冲掺铥光纤激光器的研究进展[J]. 中国激光, 2017, 44(2): 0201003.

【9】Solodyankin M A, Obraztsova E D, Lobach A S, et al. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber[J]. Optics Letters, 2008, 33(12): 1336-1338.

【10】Fang Q, Kieu K, Peyghambarian N. An all-fiber 2-μm wavelength-tunable mode-locked laser[J]. IEEE Photonics Technology Letters, 2010, 22(22): 1656-1658.

【11】Jin X X, Wang X, Wang X L, et al. Tunable multiwavelength mode-locked Tm/Ho-doped fiber laser based on a nonlinear amplified loop mirror[J]. Applied Optics, 2015, 54(28): 8260-8264.

【12】Yang G, Liu Y G, Wang Z, et al. Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber[J]. Laser Physics Letters, 2016, 13(6): 065105.

【13】Kneis C, Donelan B, Berrou A, et al. Actively mode-locked Tm3+-doped silica fiber laser with wavelength-tunable, high average output power[J]. Optics Letters, 2015, 40(7): 1464-1467.

【14】Xu Z, Dou Z Y, Hou J, et al. All-fiber wavelength-tunable Tm-doped fiber laser mode locked by SESAM with 120 nm tuning range[J]. Applied Optics, 2017, 56(21): 5978-5981.

【15】Mashiko Y, Fujita E, Tokurakawa M. Tunable noise-like pulse generation in mode-locked Tm fiber laser with a SESAM[J]. Optics Express, 2016, 24(23): 26515-26520.

【16】Sun B, Luo J Q, Yan Z Y, et al. 1867-2010 nm tunable femtosecond thulium-doped all-fiber laser[J]. Optics Express, 2017, 25(8): 8997-9002.

【17】Ma W Z, Wang T S, Zhang Y, et al. Widely tunable 2 μm continuous-wave and mode-locked fiber laser[J]. Applied Optics, 2017, 56(12): 3342-3346.

【18】Kivisto S, Hakulinen T, Guina M, et al. Tunable Raman soliton source using mode-locked Tm-Ho fiber laser[J]. IEEE Photonics Technology Letters, 2007, 19(12): 934-936.

【19】McComb T S, Sims R A, Willis C C, et al. High-power widely tunable thulium fiber lasers[J]. Applied Optics, 2010, 49(32): 6236-6242.

【20】Frazo O, Baptista J M T, Santos J L. Recent advances in high-birefringence fiber loop mirror sensors[J]. Sensors, 2007, 7(11): 2970-2983.

【21】Noda J, Okamoto K, Sasaki Y. Polarization-maintaining fibers and their applications[J]. Journal of Lightwave Technology, 1986, 4(8): 1071-1089.

【22】Mortimore D B. Fiber loop reflectors[J]. Journal of Lightwave Technology, 1988, 6(7): 1217-1224.

【23】lvarez-Tamayo R I, Durán-Sánchez M, Pottiez O, et al. Theoretical and experimental analysis of tunable Sagnac high-birefringence loop filter for dual-wavelength laser application[J]. Applied Optics, 2011, 50(3): 253-260.

【24】lvarez-Tamayo R I, Durán-Sánchez M, Pottiez O, et al. A dual-wavelength tunable laser with superimposed fiber Bragg gratings[J]. Laser Physics, 2013, 23(5): 055104.

引用该论文

Zhang Yijing,Liu Jiang,Wang Pu. All-Fiber Wavelength-Tunable Passively Mode-Locked Thulium-Doped Fiber Laser[J]. Chinese Journal of Lasers, 2018, 45(10): 1001003

张怡静,刘江,王璞. 全光纤结构波长可调谐被动锁模掺铥光纤激光器[J]. 中国激光, 2018, 45(10): 1001003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF