首页 > 论文 > 中国激光 > 45卷 > 10期(pp:1006006--1)

基于光滤波法的高速调制信号快慢光研究

Superluminal and Slow Light of High-Bit Rate Modulation Signals Based on Light Filtering

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高速调制信号的慢光技术在未来高速光通信和光信号处理等领域具有重要的应用前景。基于光滤波法, 提出了半导体光放大器(SOA)与带通滤波器串联的结构, 实现了高速调制正弦信号和归零伪随机码(RZ-PRBS)脉冲信号动态可调时延的关键技术。对于正弦信号, 当调制频率为5 GHz信号光经过光滤波结构时, 改变SOA的注入电流, 能够实现40%和-10%的基频相对延时量; 对于RZ-PRBS光脉冲信号, 波长为1549.735 nm(1550.525 nm), 脉宽为100 ps的光脉冲信号入射滤波结构, 改变SOA的注入电流, 实现脉冲包络44.6 ps(96.3 ps)的可调延时。实验数据表明, 利用所提出的光滤波结构, 通过改变SOA的注入电流, 能够实现高速调制信号的可调延时。在精确控制SOA注入电流的情况下, 该光滤波结构可用于光通信中的信号同步和比特量级的信号处理。

Abstract

The slow light technology of high-bit rate modulation signals has potential applications in the fields of optical communications of the future and optical signal processing. A key technique of high-bit rate modulated sinusoidal signal and return to zero pseudo-random bit sequences (RZ-PRBS) pulse signal dynamic adjustable delay is achieved via the structure of semiconductor optical amplifiers (SOA) cascaded band-pass filter based on light filtering. For the high-bit rate sinusoidal signal, when the 5 GHz signal propagates through the cascaded system, the fundamental harmonic fractional delay of 40% and -10% can be achieved by altering the SOA injection current, respectively. For a RZ-PRBS optical sequence, 44.6 ps (96.3 ps) advance (delay) can be achieved by tuning the injection current at the wavelength of 1549.735 nm (1550.525 nm). Experimental data shows that the proposed optical filter structure can realize the adjustable delay of high-bit rate modulation signal by changing the injection current of SOA. In the case of precisely controlling the SOA injection current, the optical filter structure can be used for signal synchronization and bit-by-bit signal processing in a communication system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201845.1006006

所属栏目:光纤光学与光通信

基金项目:航天科技集团钱学森青年创新基金

收稿日期:2018-04-16

修改稿日期:2018-05-19

网络出版日期:2018-06-12

作者单位    点击查看

王甫:北京航天控制仪器研究所, 北京 100039
何志坚:北京航天控制仪器研究所, 北京 100039

联系人作者:王甫(12118409@bjtu.edu.cn)

【1】Rha H Y, Youn C J, Kwon Y H, et al. Real-time digital signal processing for high-speed coherent optical OFDM synchronization[J]. Journal of Lightwave Technology, 2015, 33(11): 2294-2302.

【2】Petrantonakis D, Apostolopoulos D, Zouraraki O, et al. Packet-level synchronization scheme for optical packet switched network nodes[J]. Optics Express, 2006, 14(26): 12665-12669.

【3】Slavia A. Analysis of power consumption in future high-capacity network nodes[J]. Journal of Optical Communications and Networking, 2009, 1(3): 245-258.

【4】Zhao Y, Zhao H W, Zhang X Y, et al. New mechanisms of slow light and their applications[J]. Optics & Laser Technology, 2009, 41(5): 517-525.

【5】Li C H, Wan Y, Mao Q M. Research of slow light performances of photonic crystal coupled resonator optical waveguides formed by oval rods cavities[J]. Acta Optica Sinica, 2015, 35(4): 0416002.
李长红, 万勇, 毛强明. 椭圆柱微腔光子晶体耦合腔波导的慢光特性研究[J]. 光学学报, 2015, 35(4): 0416002.

【6】Liu W K, Deng J S, Dong X W. Investigation onslow light in photonic crystal with air ring[J]. Chinese Journal of Lasers, 2016, 43(1): 0106004.
刘文楷, 邓建收, 董小伟. 空气环型散射元光子晶体慢光特性研究[J]. 中国激光, 2016, 43(1): 0106004.

【7】Chen Y, Luo P, Tian Y N, et al. Fano resonance slow light characteristics of metal-dielectric-metal waveguide coupled ring cavity with metallic double-slit[J]. Acta Optica Sinica, 2017, 37(9): 0924002.
陈颖, 罗佩, 田亚宁, 等. 含金属双缝的金属-电介质-金属波导耦合环形腔Fano共振慢光特性研究[J]. 光学学报, 2017, 37(9): 0924002.

【8】Zadok A, Eyal A, Tur M. Stimulated Brillouin scattering slow light in optical fibers[J]. Applied Optics, 2011, 50(25): E38-E49.

【9】Zhu N, Wang Y G, Ren Q Q, et al. Slow light in nonlinear photonic crystal coupled-cavity waveguides[J]. Optics & Laser Technology, 2014, 57: 154-158.

【10】Gan J L, Chen J L, Xu S H, et al. Slow/fast light using a very short Er3+/Yb3+ co-doped fiber[J]. Optics Letters, 2013, 38(5): 670-672.

【11】Bigelow M S, Lepeshkin N N, Boyd R W. Observation of ultraslow light propagation in a ruby crystal at room temperature[J]. Physical Review Letters, 2003, 90(11): 113903.

【12】Bigelow M S, Lepeshkin N N, Boyd R W. Superluminal and slow light propagation in a room-temperature solid[J]. Science, 2003, 301(5630): 200-202.

【13】Pesala B, Chen Z Y, Uskov A V, et al. Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers[J]. Optics Express, 2006, 14(26): 12968-12975.

【14】Matsudaira A, Lee D, Kondratko P, et al. Electrically tunable slow and fast lights in a quantum-dot semiconductor optical amplifier near 155 μm[J]. Optics Letters, 2007, 32(19): 2894-2896.

【15】Wang F, Wang Z, Wu C Q, et al. Compared propagation characteristics of superluminal and slow light in SOA and EDFA based on rectangle signals[J]. Optics Communications, 2015, 352: 96-109.

【16】Xue W Q, Chen Y H, hman F, et al. Enhancing light slow-down in semiconductor optical amplifiers by optical filtering[J]. Optics Letters, 2008, 33(10): 1084-1086.

【17】Berger P, Bourderionnet J, Bretenaker F, et al. Time delay generation at high frequency using SOA based slow and fast light[J]. Optics Express, 2011, 19(22): 21180-21188.

【18】Wang F, Wu C Q, Wang Z, et al. Evaluation of slow light periodic signals considering the distortion in EDF[J]. Chinese Physics Letters, 2014, 31(3): 034207.

【19】Peatross J, Ware M. Physics of light and optics[M]. Provo: Brigham Young University, Department of Physics, 2008: 74-88.

【20】Chen Y H, Xue W Q, hman F, et al. Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides[J]. Journal of Lightwave Technology, 2008, 26(23): 3734-3743.

引用该论文

Wang Fu,He Zhijian. Superluminal and Slow Light of High-Bit Rate Modulation Signals Based on Light Filtering[J]. Chinese Journal of Lasers, 2018, 45(10): 1006006

王甫,何志坚. 基于光滤波法的高速调制信号快慢光研究[J]. 中国激光, 2018, 45(10): 1006006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF