首页 > 论文 > 中国激光 > 45卷 > 10期(pp:1008001--1)

滤波对激光混沌信号时延特征抑制与随机统计特性增强的研究

Suppression of Time-Delay Signature and Enhancement of Stochastic Statistical Properties of Chaotic Laser by Filtering

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

实验研究了滤波对光反馈混沌半导体激光器输出信号中时延特征的抑制。在100 MHz和500 MHz低通滤波条件下, 利用在反馈时延附近的自相关峰值和排列熵峰值量化提取混沌信号的时延特征。测量了不同偏置电流下时延特征随反馈强度的变化。结果表明,经过滤波, 在1.5Ith、-7.5 dB条件下, 时延附近的自相关从0.264降低到0.036, 排列熵从0.985上升到0.997, 同时随着反馈强度的增大, 反馈时延附近的自相关峰值与排列熵呈反比关系; 混沌激光的复杂度和混沌强弱随反馈强度的增大呈先增强后减弱的趋势。滤波作用使混沌复杂度在更低的反馈强度下趋于最大, 并随着反馈强度的增大保持混沌复杂度不变。此外, 在抑制时延特征的同时, 滤波作用有效改善了混沌信号强度分布的随机统计特性。

Abstract

The effect of filtering on the suppression of time-delay signature in the output signal of the optical feedback chaotic semiconductor laser is studied experimentally. Under the condition of the chaotic signal 100 MHz and 500 MHz low pass filter, the peak values of the autocorrelation coefficient and the permutation entropy at the feedback round trip time are used to quantitative extract the time-delay signature. The time-delay signatures with various feedback strengths are measured at different bias currents. The results show that the filtering effect suppresses the time-delay signature of the chaotic signal effectively. Under the condition of 1.5Ith bias current and -7.5 dB feedback strength, the autocorrelation function near the external cavity delay decreases from 0.264 to 0.036, and the permutation entropy increases from 0.985 to 0.997. Meanwhile, the peak value of the autocorrelation coefficient at the feedback round trip time is inversely proportional to the permutation entropy with the feedback strength increasing. The results also show that the complexity and strength of chaotic laser first rise, and then fall with the increase of feedback strength. The filtering effect induces the complexity of chaos to approach the maximum under lower feedback strength, and the complexity remains unchanged with the feedback strength increasing. Moreover, the filtering can also improve the intensity distribution and enhance the symmetry of probability-density function, which leads to substantial increase in the rate of random number generators.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O432

DOI:10.3788/cjl201845.1008001

所属栏目:非线性光学

基金项目:国家自然科学基金(61405138, 61505136, 61505137, 61775158, 61671316, 61731014, 61705159)、山西省自然科学基金(201701D221116)、山西省回国留学人员科研资助项目(2017-040)

收稿日期:2018-04-18

修改稿日期:2018-05-17

网络出版日期:2018-06-04

作者单位    点击查看

姬玉林:太原理工大学物理与光电工程学院, 山西 太原 030024新型传感器与智能控制教育部与山西省重点实验室, 山西 太原 030024
郭晓敏:太原理工大学物理与光电工程学院, 山西 太原 030024新型传感器与智能控制教育部与山西省重点实验室, 山西 太原 030024
李璞:太原理工大学物理与光电工程学院, 山西 太原 030024新型传感器与智能控制教育部与山西省重点实验室, 山西 太原 030024
刘香莲:太原理工大学物理与光电工程学院, 山西 太原 030024新型传感器与智能控制教育部与山西省重点实验室, 山西 太原 030024
张建国:太原理工大学物理与光电工程学院, 山西 太原 030024新型传感器与智能控制教育部与山西省重点实验室, 山西 太原 030024
郭龑强:太原理工大学物理与光电工程学院, 山西 太原 030024新型传感器与智能控制教育部与山西省重点实验室, 山西 太原 030024

联系人作者:郭龑强(guoyanqiang@tyut.edu.cn)

【1】Soriano M C, Garcia-Ojalvo J, Mirasso C R, et al. Complex photonics: dynamics and applications of delay-coupled semiconductors lasers[J]. Reviews of Modern Physics, 2013, 85(1): 421-470.

【2】Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 2015, 9(3): 151-162.

【3】Sunada S, Harayama T, Davis P, et al. Noise amplification by chaotic dynamics in a delayed feedback laser system and its application to nondeterministic random bit generation[J]. Chaos, 2012, 22(4): 047513.

【4】Yan S L. Period-control and chaos-anti-control of a semiconductor laser using the twisted fiber[J]. Chinese Physics B, 2016, 25(9): 090504.

【5】Argyris A, Syvridis D, Larger L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066): 343-346.

【6】Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics[J]. IEEE Journal of Quantum Electronics, 2004, 40(6): 815-820.

【7】Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1636-1638.

【8】Ma Z, Zhang M J, Liu Y, et al. Incoherent brillouin optical time-domain reflectometry with random state correlated brillouin spectrum[J]. IEEE Photonics Journal, 2015, 7(4): 6100407.

【9】Yan S L. Period-one characteristic in an optoelectronic delayed feedback semiconductor laser and its application in sensing[J]. Chinese Optics Letters, 2015, 13(4): 040401.

【10】Uchida A, Amano K, Inoue M, et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2008, 2(12): 728-732.

【11】Zhang L M, Pan B W, Chen G C, et al. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser[J]. Scientific Reports, 2017, 8: 45900.

【12】Wang A B, Wang L S, Li P, et al. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos[J]. Optics Express, 2017, 25(4): 3153-3164.

【13】Bünner M, Popp M, Meyer T, et al. Tool to recover scalar time-delay systems from experimental time series[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 54(4): R3082-R3085.

【14】Fowler A C, Kember G. Delay recognition in chaotic time series[J]. Physics Letters A, 1993, 175(6): 402-408.

【15】Bünner M J, Meyer T, Kittel A, et al. Recovery of the time-evolution equation of time-delay systems from time series[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 56(5): 5083-5089.

【16】Hegger R, Bünner M J, Kantz H, et al. Identifying and modeling delay feedback systems[J]. Physical Review Letters, 1998, 81(3): 558-561.

【17】Ortin S, Gutiérrez J M, Pesquera L, et al. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction[J]. Physica A, 2005, 351: 133-141.

【18】Rontani D, Locquet A, Sciamanna M, et al. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view[J]. IEEE Journal of Quantum Electronics, 2009, 45(7): 879-891.

【19】Wu J G, Xia G Q, Wu Z M. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback[J]. Optics Express, 2009, 17(22): 20124-20133.

【20】Guo Y Q, Peng C S, Ji Y L, et al. Photon statistics and bunching of a chaotic semiconductor laser[J]. Optics Express, 2018, 26(5): 5991-6000.

【21】Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 174102.

【22】Zunino L, Soriano M C, Fischer I, et al. Permutation-information-theory approach to unveil delay dynamics from time-series analysis[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(4): 046212.

【23】Zhou C, Lai C H. Extracting messages masked by chaotic signals of time-delay systems[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 60(1): 320-323.

【24】Rontani D, Locquet A, Sciamanna M, et al. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback[J]. Optics Letters, 2007, 32(20): 2960-2962.

【25】Wu J G, Wu Z M, Xia G Q, et al. Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system[J]. Optics Express, 2012, 20(2): 1741-1753.

【26】Wang D M, Wang L S, Zhao T, et al. Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG[J]. Optics Express, 2017, 25(10): 10911-10924.

【27】Xiang S Y, Pan W, Zhang L Y, et al. Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser[J]. Optics Communications, 2014, 324: 38-46.

【28】Wu T A, Sun W Y, Zhang X X, et al. Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection[J]. Optics Communications, 2016, 381: 174-179.

【29】Zhang X X, Wu T A, Chang K G, et al. Time-delay characteristic and bandwidth analysis of chaotic output from single-ended feedback and mutually coupled vertical-cavity surface-emitting lasers[J]. Chinese Journal of Lasers, 2017, 44(5): 0501010.
张晓旭, 吴天安, 常凯歌, 等. 单端反馈互耦合垂直腔面发射激光器混沌输出的时延特征和带宽分析[J]. 中国激光, 2017, 44(5): 0501010.

【30】Wu Y, Wang Y C, Li P, et al. Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback?[J]. IEEE Journal of Quantum Electronics, 2012, 48(11): 1371-1379.

【31】Wang A B, Yang Y B, Wang B J, et al. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference[J]. Optics Express, 2013, 21(7): 8701-8710.

【32】Li N Q, Kim B, Locquet A, et al. Statistics of the optical intensity of a chaotic external-cavity DFB laser[J]. Optics Letters, 2014, 39(20): 5949-5952.

【33】Lan D D, Guo X M, Peng C S, et al. Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation[J]. Acta Physica Sinica, 2017, 66(12): 120502.
兰豆豆, 郭晓敏, 彭春生, 等. 混沌光场光子统计分布及二阶相干度的分析与测量[J]. 物理学报, 2017, 66(12): 120502.

引用该论文

Ji Yulin,Guo Xiaomin,Li Pu,Liu Xianglian,Zhang Jianguo,Guo Yanqiang. Suppression of Time-Delay Signature and Enhancement of Stochastic Statistical Properties of Chaotic Laser by Filtering[J]. Chinese Journal of Lasers, 2018, 45(10): 1008001

姬玉林,郭晓敏,李璞,刘香莲,张建国,郭龑强. 滤波对激光混沌信号时延特征抑制与随机统计特性增强的研究[J]. 中国激光, 2018, 45(10): 1008001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF