首页 > 论文 > 中国激光 > 45卷 > 10期(pp:1001004--1)

784.9 nm和808 nm激光二极管抽运Tm/Ho键合激光器

784.9 nm and 808 nm Laser Diode Pumped Tm/Ho Bonded Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了室温下784.9 nm和808 nm的激光二极管(LD)抽运Tm/Ho键合激光器, 增益介质是由Tm∶YAG和Ho∶YAG晶体扩散键合而成的Tm/Ho∶YAG键合晶体; 对两种LD抽运源下的Ho激光性能, 包括输出功率、光束质量、输出波长进行对比。低抽运吸收功率下, 采用808 nm LD抽运的激光器效率稍低于784.9 nm LD, 验证了基于Tm/Ho键合增益介质这一新型激光实现机制在抽运波长选择上的宽可适用性。在784.9 nm的抽运波长下, 实现了室温下最高1.89 W的激光输出, 光-光转换效率为26.4%, 斜率效率为40.78%; 在常规808 nm LD的抽运下, 实现了室温下最高1.74 W的激光输出, 光-光转换效率为24.4%, 斜率效率为40.31%。两种抽运条件下, 最高输出功率所对应的激光波长均在2122 nm附近。

Abstract

784.9 nm and 808 nm laser diode (LD) pump Tm/Ho bonded laser is studied at room temperature. The gain medium is a Tm/Ho∶YAG bonded crystal formed by diffusion-bonding of Tm∶YAG and Ho∶YAG crystals. The Ho laser properties pumped by the two LDs are compared, including output power, beam quality, and wavelength. At low pump absorption power, the efficiency of laser pumped by 808 nm LD is slightly lower than that of the 784.9 nm LD, which verifies the wide applicability of the new laser realization mechanism based on Tm/Ho bonded gain medium in pump wavelength selection. Using 784.9 nm LD, the maximum output power of 1.89 W is obtained at room temperature, with an optical conversion efficiency of 26.4% and a slope efficiency of 40.78%. Using 808 nm LD, the maximum output power of 1.74 W is obtained at room temperature with an optical conversion efficiency and a slope efficiency of 24.4% and 40.31%, respectively. Under the two pump conditions, the laser wavelength corresponding to the maximum output power is near 2122 nm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.1

DOI:10.3788/cjl201845.1001004

所属栏目:激光器件与激光物理

基金项目:国家重点研发计划(2017YFB1104502, 2016YFB0701004)

收稿日期:2018-04-23

修改稿日期:2018-05-14

网络出版日期:2018-05-21

作者单位    点击查看

王娟:中国科学院福建物质结构研究所光电材料化学与物理重点实验室, 福建 福州 350002中国科学院大学, 北京100049
黄海洲:中国科学院福建物质结构研究所光电材料化学与物理重点实验室, 福建 福州 350002中国科学院大学, 北京100049
黄见洪:中国科学院福建物质结构研究所光电材料化学与物理重点实验室, 福建 福州 350002
陈金明:中国科学院福建物质结构研究所光电材料化学与物理重点实验室, 福建 福州 350002
邓晶:中国科学院福建物质结构研究所光电材料化学与物理重点实验室, 福建 福州 350002
翁文:中国科学院福建物质结构研究所光电材料化学与物理重点实验室, 福建 福州 350002
戴殊韬:中国科学院福建物质结构研究所光电材料化学与物理重点实验室, 福建 福州 350002中国科学院大学, 北京100049
吴鸿春:中国科学院福建物质结构研究所光电材料化学与物理重点实验室, 福建 福州 350002
林文雄:中国科学院福建物质结构研究所光电材料化学与物理重点实验室, 福建 福州 350002

联系人作者:林文雄(wxlin@fjirsm.ac.cn)

【1】Sungdo C, Kin P C, Dennis K K. Tunable 2.1 μm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles[J]. Applied Optics, 1991, 30(27): 3938-3943.

【2】Sammy W H, Paul J M S, Charley P H, et al. Coherent laser radar at 2 μm using solid state laser[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1): 4-15.

【3】Michael F D, Janet M P, Gary S F. Holmium laser surgery[J]. Orthopedics, 1993, 16(5): 563-566.

【4】Budni P A, Pomeranz L A, Lemons M L,et al. Efficient mid-infrared laser using 1.9-μm-pumped Ho∶YAG and ZnGeP2 optical parametric oscillators[J]. Journal of the Optical Society of America B, 2000, 17(5): 723-728.

【5】Alex D, Darrel A, Smith A, et al. 3.4 μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05 μm Ho∶YLF MOPA system[J]. Optics Express, 2007, 15(22): 14404-14413.

【6】Kieleck C, Eichhorn M, Hirth A, et al. High-efficiency 20-50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 μm holmium laser[J]. Optics Letters, 2009, 34(3): 262-264.

【7】Fan T Y, Huber G, Byer R L, et al. Spectroscopy and diode laser-pumped operation of Tm, Ho∶YAG[J]. IEEE Journal of Quantum Electronics, 1988, 24(6): 924-933.

【8】Chen H, Shen D Y, Zhang J, et al. In-band pumped highly efficient Ho∶YAG ceramic laser with 21 W output power at 2097 nm[J]. Optics Letters, 2011, 36(9):1575-1577 .

【9】Ji E, Nie M M, and Liu Q. 13.5 mJ polarized 2.09 μm fiber-bulk holmium laser and its application to a mid-infrared ZnGeP2 optical parametric oscillator[J]. Chinese Optics Letters, 2017,15(9): 091402.

【10】Zhang Y X, Gao C Q, Wang Q, et al. Single-frequency, injection-seeded Q-switched Ho∶YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD[J]. Optics Express, 2016, 24(24): 27805-27811.

【11】French V A, Petrin R R, Powell R C, et al. Energy-transfer processes in Y3Al5O12∶Tm, Ho[J]. Physical Review B: Condensed Matter 1992, 46(13): 8018-8026.

【12】Ling W J, Xia T, Dong Z, et al. WS2 saturable absorber for passively Q-switched Tm, Ho∶LLF lasers[J]. Chinese Journal of Lasers, 2017, 44(7): 0703020.
令维军, 夏涛, 董忠, 等. 基于WS2可饱和吸收体的被动调Q Tm, Ho∶LLF激光器[J]. 中国激光, 2017, 44(7): 0703020.

【13】Rustad G, Stenersen K. Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion[J]. IEEE Journal of Quantum Electronics, 1996, 32(9): 1645-1656.

【14】Zhao Y G, Wang Y C, Zhang X Z, et al. 87 fs mode-locked Tm, Ho∶CaYAlO4 laser at ~2043 nm[J]. Optics Letters, 2018, 43(4): 915-918.

【15】Li L, Ju Y L, Dai T Y, et al. L-shaped single-longitudinal-mode Tm, Ho∶YAG lasers based on twisted mode cavity[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081408.
李莉, 鞠有伦, 戴通宇, 等. 基于扭转模腔的L形单纵模Tm, Ho∶YAG激光器[J]. 激光与光电子学进展, 2017, 54(8): 081408.

【16】Budni P A, Ibach C R, Setzler S D, et al. 50 mJ, Q-switched, 2.09 μm holmium laser resonantly pumped by a diode-pumped 1.9 μm thulium laser[J]. Optics Letters, 2003, 28(12): 1016-1018.

【17】Wang F, Shen D Y, Fan D Y, et al. Efficient Ho∶YLF laser pumped by tunable Tm-doped fiber laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1727-1731.
王飞, 沈德元, 范滇元, 等.可调谐掺铥光纤激光器共振抽运的Ho∶YLF固体激光器[J]. 中国激光, 2009, 36(7): 1727-1731.

【18】Barnes N P, Amzajerdian F, Reichle D J, et al. Diode pumped Ho∶YAG and Ho∶LuAG lasers, Q-switching and second harmonic generation[J]. Applied Physics B, 2011, 103(1): 57-66.

【19】Shen Y J, Yao B Q, Duan X M, et al. 103 W in-band dual-end-pumped Ho∶YAG laser[J]. Optics Letters, 2012, 37(17): 3558-3560.

【20】Kwiatkowski J, Jabczynski J K, Zendzian W, et al. High repetition rate, Q-switched Ho∶YAG laser resonantly pumped by a 20 W linearly polarized Tm: fiber laser[J]. Applied Physics B, 2014, 114(3): 395-399.

【21】Lamrini S, Koopmann P, Schfer M, et al. Directly diode-pumped high-energy Ho∶YAG oscillator[J]. Optics Letters, 2012, 37(4): 515-517.

【22】Berrou A, Ibach T, Eichhorn M. High-energy resonantly diode-pumped Q-switched Ho3+∶YAG laser[J]. Applied Physics B, 2015, 120(1): 105-110.

【23】Ji E C, Liu Q, Cao X Z, et al. Resonantly fiber-coupled diode-pumped Ho3∶YLiF4 laser in continuous-wave and Q-switched operation[J]. IEEE Journal of Quantum Electronics, 2016, 52(7): 1-8.

【24】Zhu G L, He X D, Yao B Q, et al. Ho∶YAP laser intra-cavity pumped by a diode-pumped Tm∶YLF laser[J]. Laser Physics, 2012, 23(1): 015002.

【25】Huang H Z, Huang J H, Liu H G, et al. Efficient 2122 nm Ho∶YAG laser intra-cavity pumped by a narrowband-diode-pumped Tm∶YAG laser[J]. Optics Letters, 2016, 41(17): 3952-3955.

【26】Zayhowski J J, Dill C. Diode-pumped passively Q-switched picosecond microchip lasers[J]. Optics Letters, 1994, 19(18): 1427-1429.

【27】Liang H C, Huang T L, Chang F L, et al. Flexibly controlling the power ratio of dual-wavelength SESAM-based mode-locked lasers with wedged-bonded Nd∶YVO4/Nd∶GdVO4 crystals[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-5.

【28】Huang H Z, Huang J H, Ge Y, et al. 2.1 μm composite Tm/Ho∶YAG laser[J]. Optics Letters, 2018, 43(6): 1271-1274.

【29】Huang H Z, Gao P, Liu H G, et al. Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser[J]. Science China Physics, Mechanics & Astronomy, 2018, 61(3): 034221.

【30】Ji E C, Liu Q, Nie M M, et al. High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode[J]. Optics Letters, 2016, 41(6): 1237-1240.

引用该论文

Wang Juan,Huang Haizhou,Huang Jianhong,Chen Jinming,Deng Jing,Weng Wen,Dai Shutao,Wu Hongchun,Lin Wenxiong. 784.9 nm and 808 nm Laser Diode Pumped Tm/Ho Bonded Laser[J]. Chinese Journal of Lasers, 2018, 45(10): 1001004

王娟,黄海洲,黄见洪,陈金明,邓晶,翁文,戴殊韬,吴鸿春,林文雄. 784.9 nm和808 nm激光二极管抽运Tm/Ho键合激光器[J]. 中国激光, 2018, 45(10): 1001004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF