首页 > 论文 > Photonics Research > 6卷 > 10期(pp:943-947)

Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Near infrared light-controlled release of payloads from ultraviolet-sensitive (UV-sensitive) polymer hydrogels or nanocarriers is one of the most promising strategies for biotherapy. Here, we propose the concept of light activation of NaYF4:20%Yb,2%Tm nanocrystals (NCs). NaYF4:20%Yb,2%Tm NCs are synthesized by a solvothermal method. Effective upconversion luminescence from NaYF4:20%Yb,2%Tm NCs excited by a continuous wave (CW) 980 nm laser is obtained. The NaYF4:20%Yb,2%Tm NCs are then used as a laser gain medium and sandwiched between Al and quartz reflectors to form laser microcavities. UV and blue upconverted random lasing is obtained from the laser microcavities. Hence, we verify explicitly that the NaYF4:Yb,Tm NCs support UV and blue upconversion random lasing via a 980 nm nanosecond laser excitation. Our work provides what we believe is a new concept for precision and localized cancer therapy by external light excitation.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000943

所属栏目:Lasers and laser optics

基金项目:Natural Science Foundation of SZU (827-000130); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (51502176, 61378071); Science and Technology Projects of Shenzhen (JCYJ20150324141711618, JCYJ20160427105041864, JCYJ20170818101651195, JSGG20160429114438287).

收稿日期:2018-05-17

录用日期:2018-07-16

网络出版日期:2018-07-17

作者单位    点击查看

Ya-Pei Peng:Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Wei Lu:University Research Facility in Materials Characterization and Device Fabrication, The Hong Kong Polytechnic University, Hong Kong 999077, China
Pengpeng Ren:Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Yiqun Ni:Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Yunfeng Wang:Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
Long Zhang:Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Yu-Jia Zeng:Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Wenfei Zhang:Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Chinae-mail: zhangwf@szu.edu.cn
Shuangchen Ruan:Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Chinae-mail: scruan@szu.edu.cn

联系人作者:联系作者

【1】C. Yan, H. Zhao, D. F. Perepichka, and F. Rosei, “Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties,” Small 12 , 3888–3907 (2016).

【2】L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, and P. A. Millner, “The theoretical molecular weight of NaYF4: RE upconversion nanoparticles,” Sci. Rep. 8 , 1106 (2018).

【3】Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, and H. M. Kim, “Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors,” Phys. Chem. Chem. Phys. 19 , 7326–7332 (2017).

【4】M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, and Z. Ji, “A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing,” J. Mater. Chem. C 4 , 6516–6524 (2016).

【5】G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114 , 5161–5214 (2014).

【6】B. Yan, J.-C. Boyer, N. R. Branda, and Y. Zhao, “Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles,” J. Am. Chem. Soc. 133 , 19714–19717 (2011).

【7】B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 134 , 16558–16561 (2012).

【8】F. Shi, and Y. Zhao, “Sub-10??nm and monodisperse b-NaYF4:Yb, Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence,” J. Mater. Chem. C 2 , 2198–2203 (2014).

【9】L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8 , 11945–11953 (2016).

【10】B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6 , 355–359 (2012).

【11】L. Florescu, and S. John, “Photon statistics and coherence in light emission from a random laser,” Phys. Rev. Lett. 93 , 013602 (2004).

【12】A. L. Burin, H. Cao, and M. A. Ratner, “Understanding and control of random lasing,” Phys. B Condens. Matter 338 , 212–214 (2003).

【13】A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, and L. Chi, “Tunable random lasing behavior in plasmonic nanostructures,” Nano Converg. 4 , 1 (2017).

【14】D. S. Wiersma, and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414 , 708–709 (2001).

【15】R. C. Polson, and Z. V. Varden, “Random lasing in human tissues,” Appl. Phys. Lett. 85 , 1289–1291 (2004).

【16】D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4 , 359–367 (2008).

【17】Q. Song, S. Xiao, Z. Xu, V. M. Shalaev, and Y. L. Kim, “Random laser spectroscopy for nanoscale perturbation sensing,” Opt. Lett. 35 , 2624–2626 (2010).

【18】Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. Opt. Express 1 , 1401–1407 (2010).

【19】S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in conjugated polymer thin films,” Phys. Rev. Lett. 78 , 729–732 (1997).

【20】R. C. Polson, and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71 , 045205 (2005).

【21】G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86 , 131105 (2005).

【22】S. F. Yu, and E. S. Leong, “High-power single-mode ZnO thin-film random lasers,” IEEE J. Quantum Electron. 40 , 1186–1194 (2004).

【23】Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11 , 1700212 (2017).

【24】H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128 , 6426–6436 (2006).

【25】Z. Li, and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19 , 345606 (2008).

【26】Q. Song, L. Liu, S. Xiao, X. Zhou, W. Wang, and L. Xu, “Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser,” Phys. Rev. Lett. 96 , 033902 (2006).

【27】L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core shell nanoparticles via the use of laser cavity,” ACS Nano 11 , 834–849 (2017).

【28】H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5 , 718–727 (2018).

【29】X. Xu, W. Zhang, L. Jin, J. Qiu, and S. F. Yu, “Random lasing in Eu(3)(+) doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation,” Nanoscale 7 , 16246–16250 (2015).

引用该论文

Ya-Pei Peng, Wei Lu, Pengpeng Ren, Yiqun Ni, Yunfeng Wang, Long Zhang, Yu-Jia Zeng, Wenfei Zhang, and Shuangchen Ruan, "Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals," Photonics Research 6(10), 943-947 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF