首页 > 论文 > Photonics Research > 6卷 > 10期(pp:954-958)

Broadband quasi-phase matching in a MgO:PPLN thin film

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Future quantum information networks operated on telecom channels require qubit transfer between different wavelengths while preserving quantum coherence and entanglement. Qubit transfer is a nonlinear optical process, but currently the types of atoms used for quantum information processing and storage are limited by the narrow bandwidth of upconversion available. Here we present the first experimental demonstration of broadband and high-efficiency quasi-phase matching second-harmonic generation (SHG) in a chip-scale periodically poled lithium niobate thin film. We achieve a large bandwidth of up to 2 THz for SHG by satisfying quasi-phase matching and group-velocity matching simultaneously. Furthermore, by changing the film thickness, the central wavelength of the quasi-phase matching SHG bandwidth can be modulated from 2.70 μm to 1.44 μm. The reconfigurable quasi-phase matching lithium niobate thin film provides a significant on-chip integrated platform for photonics and quantum optics.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000954

所属栏目:Nonlinear optics

基金项目:National Key R&D Program of China (2017YFA0303700); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (11574208).

收稿日期:2018-05-07

录用日期:2018-07-30

网络出版日期:2018-08-21

作者单位    点击查看

Licheng Ge:State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Yuping Chen:State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Haowei Jiang:State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Guangzhen Li:State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Bing Zhu:State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Yi’an Liu:State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Xianfeng Chen:State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, Chinae-mail: xfchen@sjtu.edu.cn

联系人作者:Yuping Chen(ypchen@sjtu.edu.cn)

【1】G. J. Milburn, “Quantum optical Fredkin gate,” Phys. Rev. Lett. 62 , 2124–2127 (1989).

【2】E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409 , 46–52 (2001).

【3】L.-M. Duan, and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92 , 127902 (2004).

【4】L. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4 , S176–S183 (2002).

【5】S. Brustlein, E. Lantz, and F. Devaux, “Absolute radiance imaging using parametric image amplification,” Opt. Lett. 32 , 1278–1280 (2007).

【6】J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “High-resolution two-dimensional image upconversion of incoherent light,” Opt. Lett. 35 , 3796–3798 (2010).

【7】M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped pulse upconversion,” Opt. Lett. 32 , 713–715 (2007).

【8】K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100 , 151102 (2012).

【9】J. Falk, and Y. See, “Internal cw parametric upconversion,” Appl. Phys. Lett. 32 , 100–101 (1978).

【10】B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94 , 043602 (2005).

【11】O. Kuzucu, F. N. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett. 33 , 2257–2259 (2008).

【12】M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103 , 213601 (2009).

【13】P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105 , 253601 (2010).

【14】H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2 , 429 (2011).

【15】H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113 , 103601 (2014).

【16】G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro photonic devices,” Laser Photon. Rev. 6 , 488–503 (2012).

【17】A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 6 , 488–503 (2018).

【18】H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, and R. M. Osgood, “Helium-ion-induced radiation damage in linbo3 thin-film electro-optic modulators,” Opt. Express 22 , 19653–19661 (2014).

【19】L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24 , 4640–4647 (2016).

【20】A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50?GHz,” Opt. Lett. 41 , 5700–5703 (2016).

【21】C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lon?ar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26 , 1547–1555 (2018).

【22】C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. Huang, P. Stark, and M. Lon?ar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22 , 30924–30933 (2014).

【23】J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5 , 8072 (2015).

【24】R. Luo, H. Jiang, H. Liang, Y. Chen, and Q. Lin, “Self-referenced temperature sensing with a lithium niobate microdisk resonator,” Opt. Lett. 42 , 1281–1284 (2017).

【25】J. Sun, and C. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO:LiNbO3 ridge waveguides,” Opt. Lett. 37 , 2028–2030 (2012).

【26】M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28 , 2631–2654 (1992).

【27】J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127 , 1918–1939 (1962).

【28】H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331 , 1165–1168 (2011).

【29】Y.-Q. Qin, C. Zhang, Y.-Y. Zhu, X.-P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100 , 063902 (2008).

【30】M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous type I QPM broadband SFG and SHG in MGO:PPLN,” Opt. Lett. 35 , 2672–2674 (2010).

【31】J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MGO-doped PPLN,” Opt. Express 16 , 6957–6962 (2008).

【32】R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40 , 2715–2718 (2015).

【33】T. Dougherty, and E. J. Heilweil, “Dual-beam subpicosecond broadband infrared spectrometer,” Opt. Lett. 19 , 129–131 (1994).

【34】E. J. Heilweil, “Ultrashort-pulse multichannel infrared spectroscopy using broadband frequency conversion in LiIO3,” Opt. Lett. 14 , 551–553 (1989).

【35】A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110 , 111109 (2017).

【36】C. Rulliere, Femtosecond Laser Pulses (Springer, 1998).

【37】N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MGO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27 , 1046–1048 (2002).

【38】O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91 , 343–348 (2008).

【39】A. W. Snyder, and J. Love, Optical Waveguide Theory (Springer, 2012).

【40】C. Zhu, Y. Chen, G. Li, L. Ge, B. Zhu, M. Hu, and X. Chen, “Multiple-mode phase matching in a single-crystal lithium niobate waveguide for three-wave mixing,” Chin. Opt. Lett. 15 , 091901 (2017).10.3788/COLCJOEE3

【41】L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3 , 531–535 (2016).

【42】R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107 , 162903 (2015).

【43】P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108 , 152902 (2016).

【44】S. Kim, and V. Gopalan, “Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate,” Mater. Sci. Eng. B 120 , 91–94 (2005).

【45】I. Mhaouech, V. Coda, G. Montemezzani, M. Chauvet, and L. Guilbert, “Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide,” Opt. Lett. 41 , 4174–4177 (2016).

【46】W. Jin, and K. S. Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” Opt. Lett. 40 , 237–240 (2015).

【47】R. W. Boyd, “Nonlinear optics,” in Handbook of Laser Technology and Applications (Three-Volume Set) (Taylor & Francis, 2003), pp.?161–183.

引用该论文

Licheng Ge, Yuping Chen, Haowei Jiang, Guangzhen Li, Bing Zhu, Yi’an Liu, and Xianfeng Chen, "Broadband quasi-phase matching in a MgO:PPLN thin film," Photonics Research 6(10), 954-958 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF