首页 > 论文 > Photonics Research > 6卷 > 10期(pp:959-964)

Nonlinear distortion and spatial dispersion of intense terahertz generation in lithium niobate via the tilted pulse front technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We systematically investigate the influences of the input infrared spectrum, chirp, and polarization on the emitted intense terahertz spectrum and spatial dispersion in lithium niobate via optical rectification. The terahertz yield and emission spectrum depend on both the chirp and spectrum of the input pump laser pulses. We also observe slight non-uniform spatial dispersion using a knife-edge measurement, which agrees well with the original predictions. The possible mechanism is the nonlinear distortion effect caused by high-energy laser pumping. Our study is very important and useful for developing intense terahertz systems with applications in extreme terahertz sciences and nonlinear phenomena.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000959

所属栏目:Nonlinear optics

基金项目:National Basic Research Program of China (2013CBA01501); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (11334013, 11520101003, 11861121001, U1530150); Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)10.13039/501100002367 (XDB07030300, XDB16010200, XDB17030500); National Science Foundation (NSF)10.13039/100000001 (0968895, 1102301, 1263236); 863 Program (2013AA014402); “Zhuoyue” Program (ZG216S1807); “Qingba” Program (KG12052501, ZG226S1832).

收稿日期:2018-06-26

录用日期:2018-08-24

网络出版日期:2018-08-24

作者单位    点击查看

Baolong Zhang:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, ChinaSchool of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Shangqing Li:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, ChinaSchool of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Shusu Chai:School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
Xiaojun Wu:School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
Jinglong Ma:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Liming Chen:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, ChinaSchool of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaCollaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
Yutong Li:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, ChinaSchool of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaCollaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China

联系人作者:Xiaojun Wu(xiaojunwu@buaa.edu.cn)

【1】X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11 , 16–18 (2017).

【2】G. Q. Liao, Y. T. Li, Y. H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions,” Phys. Rev. Lett. 116 , 205003 (2016).

【3】H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18 , 093004 (2016).

【4】M. K. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. B. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. W. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487 , 345–348 (2012).

【5】T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7 , 680–690 (2013).

【6】C. Lange, T. Maag, M. Hohenleutner, S. Baierl, O. Schubert, E. R. J. Edwards, D. Bougeard, G. Woltersdorf, and R. Huber, “Extremely nonperturbative nonlinearities in GaAs driven by atomically strong terahertz fields in gold metamaterials,” Phys. Rev. Lett. 113 , 227401 (2014).

【7】O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8 , 119–123 (2014).

【8】K. N. Egodapitiya, S. Li, and R. R. Jones, “Terahertz-induced field-free orientation of rotationally excited molecules,” Phys. Rev. Lett. 112 , 227401 (2014).

【9】T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schuller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12 , 119–123 (2016).

【10】M. A. W. Van Loon, N. Stavrias, N. H. Le, K. L. Litvinenko, P. T. Greenland, C. R. Pidgeon, K. Saeedi, B. Redlich, G. Aeppli, and B. N. Murdin, “Giant multiphoton absorption for THz resonances in silicon hydrogenic donors,” Nat. Photonics 12 , 179–184 (2018).

【11】C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser,” Opt. Lett. 39 , 6632–6635 (2014).

【12】J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10 , 1161–1166 (2002).

【13】X. J. Wu, J. L. Ma, B. L. Zhang, S. S. Chai, Z. J. Fang, C. Y. Xia, D. Y. Kong, J. G. Wang, H. Liu, C. Q. Zhu, X. Wang, C. J. Ruan, and Y. T. Li, “Highly efficient generation of 0.2??mJ terahertz pulses in lithium niobate at room temperature with sub-50??fs chirped Ti:sapphire laser pulses,” Opt. Express 26 , 7107–7116 (2018).

【14】H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1??MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98 , 091106 (2011).

【15】S. W. Huang, E. Granados, W. R. Huang, K. H. Hong, L. E. Zapata, and F. X. Kartner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38 , 796–798 (2013).

【16】J. A. Fulop, G. Polonyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3 , 1075–1078 (2016).

【17】L. Palfalvi, G. Toth, L. Tokodi, Z. Marton, J. A. Fulop, G. Almasi, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25 , 29560–29573 (2017).

【18】B. K. Ofori-Okai, P. Sivarajah, W. R. Huang, and K. A. Nelson, “THz generation using a reflective stair-step echelon,” Opt. Express 24 , 5057–5068 (2016).

【19】L. Palfalvi, Z. Ollmann, L. Tokodi, and J. Hebling, “Hybrid tilted-pulse-front excitation scheme for efficient generation of high-energy terahertz pulses,” Opt. Express 24 , 8156–8169 (2016).

【20】S. C. Zhong, J. Li, Z. H. Zhai, L. G. Zhu, J. Li, P. W. Zhou, J. H. Zhao, and Z. R. Li, “Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser,” Opt. Express 24 , 14828–14835 (2016).

【21】K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kartner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23 , 5253–5276 (2015).

【22】C. Lombosi, G. Polonyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fulop, “Nonlinear distortion of intense THz beams,” New J. Phys. 17 , 083041 (2015).

【23】F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies,” Opt. Lett. 39 , 4333–4336 (2014).

【24】J. A. Fulop, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Palfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4??mJ energy,” Opt. Express 22 , 20155–20163 (2014).

【25】M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39 , 5439–5442 (2014).

【26】M. I. Bakunov, and S. B. Bodrov, “Terahertz generation with tilted-front laser pulses in a contact-grating scheme,” J. Opt. Soc. Am. B 31 , 2549–2557 (2014).

【27】J. A. Fulop, L. Palfalvi, G. Almasi, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18 , 12311–12327 (2010).

【28】J. A. Fulop, L. Palfalvi, S. Klingebiel, G. Almasi, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37 , 557–559 (2012).

【29】S. B. Bodrov, A. A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes,” Appl. Phys. Lett. 103 , 251103 (2013).

【30】M. Kunitski, M. Richter, M. D. Thomson, A. Vredenborg, J. Wu, T. Jahnke, M. Schoffler, H. Schmidt-Bocking, H. G. Roskos, and R. Dorner, “Optimization of single-cycle terahertz generation in LiNbO3 for sub-50 femtosecond pump pulses,” Opt. Express 21 , 6826–6836 (2013).

【31】X. J. Wu, S. Carbajo, K. Ravi, F. Ahr, G. Cirmi, Y. Zhou, O. D. Mucke, and F. X. Kartner, “Terahertz generation in lithium niobate driven by Ti:sapphire laser pulses and its limitations,” Opt. Lett. 39 , 5403–5406 (2014).

【32】S. C. Zhong, Z. H. Zhai, J. Li, L. G. Zhu, J. Li, K. Meng, Q. Liu, L. H. Du, J. H. Zhao, and Z. R. Li, “Optimization of terahertz generation from LiNbO3 under intense laser excitation with the effect of three-photon absorption,” Opt. Express 23 , 31313–31323 (2015).

【33】L. Tokodi, J. Hebling, and L. Palfalvi, “Optimization of the tilted-pulse-front terahertz excitation setup containing telescope,” J. Infrared Millimeter Terahertz Waves 38 , 22–32 (2017).

【34】A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J. P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101 , 11–14 (2010).

引用该论文

Baolong Zhang, Shangqing Li, Shusu Chai, Xiaojun Wu, Jinglong Ma, Liming Chen, and Yutong Li, "Nonlinear distortion and spatial dispersion of intense terahertz generation in lithium niobate via the tilted pulse front technique," Photonics Research 6(10), 959-964 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF