首页 > 论文 > Photonics Research > 6卷 > 10期(pp:965-970)

High-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide with a windowed silica top layer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We experimentally demonstrate high-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide. A four-wave mixing conversion efficiency of ?38.7 dB and a 3-dB conversion bandwidth of 35 nm are achieved in the silicon-graphene strip waveguide with an optimized light-graphene interaction length of 60 μm. The interaction length is controlled by a windowed area of silica layer on the silicon waveguide. Numerical simulations and experimental studies are carried out and show a nonlinear parameter γGOS as large as 104 W?1?·m?1.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000965

所属栏目:Integrated optics

基金项目:National Key R&D Program of China (2016YFB0402501).

收稿日期:2018-04-30

录用日期:2018-07-26

网络出版日期:2018-08-23

作者单位    点击查看

Yuxing Yang:State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Zhenzhen Xu:State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Xinhong Jiang:State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Yu He:State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Xuhan Guo:State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Yong Zhang:State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Ciyuan Qiu:State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Yikai Su:State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

联系人作者:Yikai Su(yikaisu@sjtu.edu.cn)

【1】A. E. Willner, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32 , 660–680 (2014).

【2】S. Gao, E.-K. Tien, Q. Song, Y. Huang, and O. Boyraz, “Ultra-broadband one-to-two wavelength conversion using low-phase-mismatching four-wave mixing in silicon waveguides,” Opt. Express 18 , 11898–11903 (2010).

【3】M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441 , 960–963 (2006).

【4】Z. Li, and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18 , 1341–1343 (2006).

【5】J. V. Erps, F. Luan, M. D. Pelusi, T. Iredale, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640-Gb/s Data,” J. Lightwave Technol. 28 , 209–215 (2010).

【6】R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2 , 35–38 (2008).

【7】M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15 , 12949–12958 (2007).

【8】L. Thylén, and L. Wosinski, “Integrated photonics in the 21st century,” Photon. Res. 2 , 75–81 (2014).

【9】Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems,” Photon. Res. 3 , B28–B46 (2015).

【10】J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4 , 535–544 (2010).

【11】C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3 , 216–219 (2009).

【12】L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, “Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime,” Photon. Res. 3 , 214–219 (2015).

【13】E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105 , 097401 (2010).

【14】Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, and Y. Su, “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep. 5 , 13480 (2015).

【15】N. Vermeulen, J. Cheng, J. E. Sipe, and H. Thienpont, “Opportunities for wideband wavelength conversion in foundry-compatible silicon waveguides covered with graphene,” IEEE J. Sel. Top. Quantum Electron. 22 , 347–359 (2016).

【16】C. Donnelly, and D. T. H. Tan, “Ultra-large nonlinear parameter in graphene-silicon waveguide structures,” Opt. Express 22 , 22820–22830 (2014).

【17】H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101 , 111110 (2012).

【18】T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6 , 554–559 (2012).

【19】M. Ji, H. Cai, L. Deng, Y. Huang, Q. Huang, J. Xia, Z. Li, J. Yu, and Y. Wang, “Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator,” Opt. Express 23 , 18679–18685 (2015).

【20】X. Hu, Y. Long, M. Ji, A. Wang, L. Zhu, Z. Ruan, Y. Wang, and J. Wang, “Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal,” Opt. Express 24 , 7168–7177 (2016).

【21】H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 105 , 091111 (2014).

【22】K. K. Chow, S. Yamashita, and S. Y. Set, “Four-wave-mixing-based wavelength conversion using a single-walled carbon-nanotube-deposited planar lightwave circuit waveguide,” Opt. Lett. 35 , 2070–2072 (2010).

【23】K. J. A. Ooi, L. K. Ang, and D. T. H. Tan, “Waveguide engineering of graphene’s nonlinearity,” Appl. Phys. Lett. 105 , 111110 (2014).

【24】M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82 , 2954–2956 (2003).

【25】H. R. K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30 , 427–429 (2005).

【26】X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5 , 9144–9153 (2011).

【27】H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13 , 4629–4637 (2005).

【28】D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photon. Res. 6 , B50–B66 (2018).

【29】C.-L. Wu, Y.-H. Lin, S.-P. Su, B.-J. Huang, and G.-R. Lin, “Degenerate four-wave mixing in Si quantum dot doped Si-rich SiNx channel waveguide,” J. Lightwave Technol. 34 , 4110–4119 (2016).

【30】K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8 , 13878 (2017).

【31】J. W. Choi, B.-U. Sohn, G. F. R. Chen, D. K. T. Ng, and D. T. H. Tan, “Broadband incoherent four-wave mixing and 27??dB idler conversion efficiency using ultra-silicon rich nitride devices,” Appl. Phys. Lett. 112 , 181101 (2018).

引用该论文

Yuxing Yang, Zhenzhen Xu, Xinhong Jiang, Yu He, Xuhan Guo, Yong Zhang, Ciyuan Qiu, and Yikai Su, "High-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide with a windowed silica top layer," Photonics Research 6(10), 965-970 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF