首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:101701--1)

用于定位激发平面的混合高斯方法

Location Method of Excitation Planes Based on Gaussian Mixture Distribution

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

荧光分子断层成像是一种高稳定性、低副作用的分子影像技术, 一直是生物光学领域的研究热点, 当激发平面位置与荧光目标位置接近时, 光源的重建结果会更好; 为了确定激发平面的位置, 提出了一种混合高斯方法, 该方法首先使用少量激发光源来获得发射光的生物体外表面分布, 再使用带剪枝策略的混合高斯模型对该分布进行拟合, 最后利用拟合后的峰值自动确定激发平面的个数和位置; 基于新激发平面的激发光源可以获得荧光分子断层成像逆问题, 进而利用该逆问题对荧光目标进行重建。实验结果表明:基于重新定位的激发平面的荧光分子断层成像光源重建结果在定位精度上显著优于原始激发平面对应的重建结果。

Abstract

Fluorescence molecular tomography is a robust molecular imaging technology with low side effects which is a very hot topic in photobiology always. The fluorescence molecular tomography has better reconstruction results generally, if the excitation plane is close to the fluorescent targets. To find better excitation planes, we propose a location method of excitation planes based on mixture Gaussian distribution. Firstly, the method uses several excitation sources to obtain the living organism external surface distribution of the emitting light. Secondly, the Gaussian mixture model with pruning strategy is used to fit the distribution. Finally, the number and locations of the excitation planes are automatically determined according to fitted peak values. Fluorescence molecular tomography inverse problems are built based on the excitation light source of new excitation planes, and fluorescent targets are reconstructed using the inverse problems. Experimental results demonstrate that the fluorescence molecular tomography reconstruction results depending on the new excitation planes are much better than the results depending on original excitation planes.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop55.101701

所属栏目:医用光学与生物技术

基金项目:国家自然科学基金(61731015, 61673319, 11571012, 61640418)、陕西省国际合作项目(2013KW04-04)

收稿日期:2018-03-06

修改稿日期:2018-05-02

网络出版日期:2018-05-07

作者单位    点击查看

王晓东:西北大学信息科学与技术学院, 陕西 西安 710127
耿国华:西北大学信息科学与技术学院, 陕西 西安 710127
易黄建:西北大学信息科学与技术学院, 陕西 西安 710127
何雪磊:西北大学信息科学与技术学院, 陕西 西安 710127
贺小伟:西北大学信息科学与技术学院, 陕西 西安 710127

联系人作者:耿国华(ghgeng@nwu.edu.cn); 王晓东(Xiaodong_Wang_1801@163.com);

【1】Ntziachristos V, Tung C H, Bremer C, et al. Fluorescence molecular tomography resolves protease activity in vivo[J]. Nature Medicine, 2002, 8: 757-761.

【2】Ale A, Ermolayev V, Herzog E,et al. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography[J]. Nature Methods, 2012, 9: 615-620.

【3】Tian J. Molecular imaging[M]. Hangzhou: Zhejiang University Press, 2013: 185-216.

【4】He X L, Wang X D, Yi H J, et al. Laplacian manifold regularization method for fluorescence molecular tomography[J]. Journal of Biomedical Optics, 2017, 22(4): 045009.

【5】Guo H B, Yu J J, He X W, et al. Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization[J]. Biomedical Optics Express, 2015, 6(5): 1648-1664.

【6】Hou Y Q, Wei H N, Yi H J, et al. Imaging system of fluorescence molecular tomography with spiral excitation[J]. Journal of Xidian University (Natural Science), 2018, 45(2): 97-102.
侯榆青, 魏红娜, 易黄建, 等. 螺旋式激发的荧光分子断层成像[J]. 西安电子科技大学学报(自然科学版), 2018, 45(2): 97-102.

【7】Zhu D W, Li C Q. Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement[J]. Physics in Medicine and Biology, 2014, 59(12): 2901-2912.

【8】Chen D F, Liang J M, Li Y, et al. A sparsity-constrained preconditioned Kaczmarz reconstruction method for fluorescence molecular tomography[J]. BioMed Research International, 2016, 2016: 4504161.

【9】An Y, Liu J, Zhang G L, et al. A novel region reconstruction method for fluorescence molecular tomography[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(7): 1818-1826.

【10】Wu Z T, Wang X D, Yu J, J, et al. Synchronization-based clustering algorithm for reconstruction of multiple reconstructed targets in fluorescence molecular tomography[J]. Journal of the Optical Society of America A, 2018, 35(2): 328-335.

【11】Han D, Tian J, Zhu S P, et al. A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization[J]. Optics Express, 2010, 18(8): 8630-8646.

【12】Cong A, Wang G. A finite-element-based reconstruction method for 3D fluorescence tomography[J]. Optics Express, 2005, 13(24): 9847-9857.

【13】Wang D F, Liu X, Chen Y P, et al. A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(5): 766-773.

【14】Cong W X, Wang G, Kumar D, et al. Practical reconstruction method for bioluminescence tomography[J]. Optics Express, 2005, 13(18): 6756-6771.

【15】Yi H J. Regularization based reconstruction algorithms for fluorescence molecular tomography[D]. Xi′an: Xidian University, 2013: 15-31.
易黄建. 基于正则化的荧光分子断层成像重建方法研究[D]. 西安: 西安电子科技大学, 2013: 15-31.

【16】Bishop C. Pattern recognition and machine learning[M]. New York: Springer, 2006: 430-439.

【17】Dogdas B, Stout D, Chatziioannou A F, et al. Digimouse: a 3D whole body mouse atlas from CT and cryosection data[J]. Physics in Medicine & Biology, 2007, 52(3): 577-587.

【18】Liu H J, Hou Y Q, He X W, et al. A comparative study and evaluation on several typical iterative methods for bioluminescence tomography[J]. Laser & Optoelectronics Progress, 2015, 52(8), 52: 081704.
刘合娟, 侯榆青, 贺小伟, 等. 几种典型迭代算法在生物发光断层成像中的对比研究及评估[J]. 激光与光电子学进展, 2015, 52(8): 081704.

【19】Dong F, Hou Y Q, Yu J J, et al. Fluorescence molecular tomography via greedy method combined with region-shrinking strategy[J]. Laser & Optoelectronics Progress, 2016, 53(1): 011701.
董芳, 侯榆青, 余景景, 等. 结合区域收缩和贪婪策略的荧光分子断层成像[J]. 激光与光电子学进展, 2016, 53(1): 011701.

【20】Hou Y Q, Jin M Y, He X W, et al. Fluorescence molecular tomography using a stochastic variant of alternating direction method of multipliers[J]. Acta Optica Sinica, 2017, 37(7): 0717001.
侯榆青, 金明阳, 贺小伟, 等. 基于随机变量交替方向乘子法的荧光分子断层成像[J]. 光学学报, 2017, 37(7): 0717001.

【21】He X W, Liang J M, Wang X R, et al. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 2010, 18(24): 24825-24841.

【22】Wang X D, Liu F, Jiao L C, et al. Incomplete variables truncated conjugate gradient method for signal reconstruction in compressed sensing[J]. Information Sciences, 2014, 288(20): 387-411.

【23】Zhang H B, Geng G H, Zhao Y C, et al. Nonconvex L1-2 regularization for fast cone-beam X-ray luminescence computed tomography[J]. Acta Optica Sinica, 2017, 37(6): 0617001.
张海波, 耿国华, 赵映程, 等. 基于非凸L1-2正则子的锥束X射线发光断层成像[J]. 光学学报, 2017, 37(6): 0617001.

【24】Zhang X, Yi H J, Hou Y Q, et al. Fast reconstruction in fluorescence molecular tomography based on locality preserving projections[J]. Acta Optica Sinica, 2016, 36(7): 0717001.
张旭, 易黄建, 侯榆青, 等. 基于局部保留投影的荧光分子断层成像快速重建[J]. 光学学报, 2016, 36(7): 0717001.

【25】Song X M, Pogue B W, Jiang S D, et al. Automated region detection based on the contrast-to-noise ratio in near-infrared tomography[J]. Applied Optics, 2004, 43(5): 1053-1062.

引用该论文

Wang Xiaodong,Geng Guohua,Yi Huangjian,He Xuelei,He Xiaowei. Location Method of Excitation Planes Based on Gaussian Mixture Distribution[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101701

王晓东,耿国华,易黄建,何雪磊,贺小伟. 用于定位激发平面的混合高斯方法[J]. 激光与光电子学进展, 2018, 55(10): 101701

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF