首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:101405--1)

激光切割AZ31B镁铝合金正交实验研究

Orthogonal Experiment on Laser Cutting of AZ31B Magnesium Aluminum Alloys

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用热力学方程进行了激光切割AZ31B镁铝合金的仿真实验。激光切割速度为8 mm·s-1时, 试样具有较好的切割质量。开展了光纤激光切割1.0 mm厚AZ31B镁铝合金的工艺实验, 获得了激光功率、切割速度、离焦量对激光切割质量影响的单因素实验数据, 并提出了三因素正交实验方案。1.0 mm厚AZ31B镁铝合金激光切割的优化工艺参数为:激光功率120 W, 切割速度0.5 m·min-1, 离焦量1.2 mm, 与理论计算值基本一致。

Abstract

The simulation experiment on the laser cutting of the AZ31B magnesium aluminum alloys is conducted based on the thermodynamic equations and it is found that the cutting quality of samples is better when the laser cutting speed is 8 mm·s-1. The process experiment on the laser cutting of the 1.0-mm-thick AZ31B magnesium aluminum alloys is carried out and the single-factor experimental data related to the effects of laser power, cutting speed and defocusing is obtained. The scheme of three-factor orthognal experiment is also proposed. The optimum process parameters for a laser cutting of the 1.0-mm-thick AZ31B magnesium aluminum alloys are a laser power of 120 W, a cutting speed of 0.5 m·min-1, and a defocusing of 1.2 mm, which are basically consistent with the theoretical calculation values.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG485

DOI:10.3788/lop55.101405

所属栏目:激光器与激光光学

基金项目:重庆市教育自然科学项目(KJ1600633)、重庆工商大学科研平台项目(KFJJ2016031, KFJJ2017052, KFJJ2017053)

收稿日期:2018-03-08

修改稿日期:2018-05-01

网络出版日期:2018-05-22

作者单位    点击查看

王洪建:重庆工商大学制造装备机构设计与控制重庆市重点实验室, 重庆 400067重庆工商大学国家智能制造服务国际科技合作基地, 重庆 400067
李永亮:重庆工商大学制造装备机构设计与控制重庆市重点实验室, 重庆 400067
李平:重庆工商大学制造装备机构设计与控制重庆市重点实验室, 重庆 400067重庆工商大学国家智能制造服务国际科技合作基地, 重庆 400067

联系人作者:王洪建(whj_cqu@163.com)

【1】Wang X H. Iron castings temperature field numerical analysis by laser cutting the stress-raising groove[D]. Changchun: Jilin University, 2010.
王小焕. 铸铁件裂解槽激光切割温度场有限元数值模拟[D]. 长春: 吉林大学, 2010.

【2】Yu F Y. Numerical simulation on CW-laser cutting the C70S6 fracture splitting notch[D]. Changchun: Jilin University, 2013.
于凤雨. 连续激光切割C70S6裂解槽数值模拟[D]. 长春: 吉林大学, 2013.

【3】Yang J H. Study of the experiment and numerical simulation on laser drilling for 0Cr18Ni9 stainless steel[D]. Nanchang: Nanchang Hangkong University, 2011.
杨俊华. 0Cr18Ni9不锈钢激光打孔工艺及数值模拟研究[D]. 南昌: 南昌航空大学, 2011.

【4】Ye S L, Ma J S, Huang X. Simulation of the temperature field in laser cutting of brittle materials[J]. Optical Technique, 2007, 33(4): 599-601.
叶圣麟, 马军山, 黄鑫. 激光切割脆性材料的温度场模拟[J]. 光学技术, 2007, 33(4): 599-601.

【5】Yuan W, Li Z G, Cai Y G. Simulation of ANSYS-based laser cutting temperature field[J]. Journal of Changchun University, 2013, 23(12): 1561-1564.
袁伟, 李占国, 蔡云光. 基于ANSYS的激光切割温度场仿真[J]. 长春大学学报, 2013, 23(12): 1561-1564.

【6】Kashani M M, Movahhedy M R, Ahmadia M T, et al. Analytical prediction of the temperature field in laser assisted machining[J]. Procedia CIRP, 2016, 46: 575-578.

【7】Akhtar S S, Yilbas B S. Laser treatment of steel surfaces: Numerical and experimental investigations of temperature and stress fields[M]∥ Hashmi S, Batalha G F. Comprehensive Materials Processing. Amsterdam : Elsevier Ltd. , 2014: 25-46.

【8】Negarestani R, Sundar M, Sheikh M A, et al. Numerical simulation of laser machining of carbon-fibre-reinforced composites[J]. Proceedings of the Institution of Mechanical Engineers, 2010, 224(7): 1017-1027.

【9】Zhang Z Y, Zhang Y K. The phase analysis and the simulation of temperature field of laser cutting[J]. Applied Laser, 2003, 23(6): 330-334.
张朝阳, 张永康. 激光切割过程的阶段分析及温度场模拟[J]. 应用激光, 2003, 23(6): 330-334.

【10】Chen Y. Research on temperature field numerical simulation and performance of laser re-melted Ni-coating oriented by jet electroforming on 45 steel[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
陈勇. 45钢喷射电镀镍层激光重熔温度场数值模拟及其性能研究[D]. 南京: 南京航空航天大学, 2007.

【11】Kar A, Rothenflue J A, Latham W P. Scaling laws for thick-section cutting with a chemical oxygen-iodine laser[J]. Journal of Laser Applications, 1997, 9(6): 279-286.

【12】Cenna A A, Mathew P. Analysis and prediction of laser cutting parameters of fibre reinforced plastics (FRP) composite materials[J]. International Journal of Machine Tools & Manufacture, 2002, 42(1): 105-113.

【13】Herzog D, Jaeschke P, Meier O, et al. Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP[J]. International Journal of Machine Tools & Manufacture, 2008, 48(12/13): 1464-1473.

【14】Chen C, Gao M, Gu Y Z, et al. Study on fiber laser cutting of aluminum alloy sheet[J]. Chinese Journal of Lasers, 2014, 41(6): 0603004.
陈聪, 高明, 顾云泽, 等. 光纤激光切割铝合金薄板工艺特性研究[J]. 中国激光, 2014, 41(6): 0603004.

【15】Yan X G, Wang W X, Cui Z Q, et al. Investigation of cutting process of AZ31B magnesium alloy plate via solid-state pulsed Nd∶YAG laser[J]. Applied Laser, 2010, 30(5): 381-385.
闫兴贵, 王文先, 崔泽琴, 等. 固脉冲Nd∶YAG激光切割AZ31B镁合金的工艺研究[J]. 应用激光, 2010, 30(5): 381-385.

【16】Xie L C, Quan Y J. Status and development of laser processing of magnesium alloys[J]. Mining and Metallurgical Engineering, 2012, 32(6): 120-124.
谢丽初, 全亚杰. 镁合金的激光加工现状与发展[J]. 矿冶工程, 2012, 32(6): 120-124.

【17】Rajamani D, Tamilarasan A. Fuzzy and regression modeling for Nd∶YAG laser cutting of Ti-6Al-4V superalloy sheet[J]. Journal for Manufacturing Science and Production, 2016, 16(3): 153-162.

【18】Mishra S, Sridhara N, Mitra A, et al. CO2 laser cutting of ultra thin (75 μm) glass based rigid optical solar reflector (OSR) for spacecraft application[J]. Optics and Lasers in Engineering, 2017, 90: 128-138.

【19】Ozaki H, Le M Q, Kawakami H, et al. Real-time observation of laser cutting fronts by X-ray transmission[J]. Journal of Materials Processing Technology, 2016, 237: 181-187.

【20】Pocorni J, Powell J, Deichsel E, et al. Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology[J]. Optics & Laser Technology, 2017, 87: 87-93.

【21】Manjoth S, Keshavamurthy R, Kumar G S P. Optimization and analysis of laser beam machining parameters for Al7075-TiB2 in-situ composite[J]. IOP Conference Series: Materials Science and Engineering, 2016, 149: 012013.

【22】Srinivasan S, Kadadevaramath R S, Kumar V, et al. Optimization of material removal rate and surface roughness in laser cutting machine by Taguchi method[J]. International Journal of Innovative Research in Science Engineering and Technology, 2015, 4(6): 4993-4998.

【23】Madi M, Radovanovi M, Mani M, et al. Optimization of CO2 laser cutting process using Taguchi and dual response surface methodology[J]. Tribology in Industry, 2014, 36(3): 236-243.

【24】Chen X Y, Li T C, Zhai K, et al. Using orthogonal experimental method optimizing surface quality of CO2 laser cutting process for PMMA microchannels[J]. International Journal of Advanced Manufacturing Technology, 2017, 88: 2727-2733.

【25】Gui R S. Study of temperature distributions of layered-materials irradiated by Gaussian laser[D]. Suzhou: Suzhou University, 2008.
桂如胜. 高斯激光辐照下分层材料的温度分布研究[D]. 苏州: 苏州大学, 2008.

【26】Guo Z Q, Wu W J, Man Y H, et al. Phase change analysis of PCM by ANSYS finite element method[J]. New Technology & New Process, 2007(11): 87-89.
郭志强, 吴文健, 满亚辉, 等. 基于ANSYS有限元方法对相变材料相变过程的分析[J]. 新技术新工艺, 2007(11): 87-89.

【27】Cui Z Q. Research on pulsed laser processing behavior of AZ31B magnesium alloy[D]. Taiyuan: Taiyuan University of Techonology, 2011.
崔泽琴, AZ31B镁合金脉冲激光加工行为的研究[D]. 太原: 太原理工大学, 2011.

【28】Ren N F, Zhang W, Wang H X, et al. Process optimization for pulsed laser drilling of 20Cr13 sheets based on orthogonal experiments[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031410.
任乃飞, 张文, 王后孝, 等. 基于正交实验的20Cr13板材脉冲激光打孔工艺优化[J]. 激光与光电子学进展, 2016, 53(3): 031410.

【29】Chen Y X, Gao L. Analysis of processing parameters for laser cutting high-temperature alloy steel by orthogonal method[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111403.
陈宇翔, 高亮. 正交法分析激光切割高温合金钢工艺参数[J]. 激光与光电子学进展, 2016, 53(11): 111403.

引用该论文

Wang Hongjian,Li Yongliang,Li Ping. Orthogonal Experiment on Laser Cutting of AZ31B Magnesium Aluminum Alloys[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101405

王洪建,李永亮,李平. 激光切割AZ31B镁铝合金正交实验研究[J]. 激光与光电子学进展, 2018, 55(10): 101405

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF