首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:101601--1)

一维In0.3Ga0.7As太阳能电池的激光辐照模拟

Simulation of Laser Irradiation of One-Dimensional In0.3Ga0.7As Solar Cells

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用有限元数值模拟方法, 对一维In0.3Ga0.7As太阳能电池在1070 nm连续激光辐照下的输出特性进行了研究。通过计算零偏压下太阳能电池内部的载流子复合速率分布, 验证了模型的有效性。基于该模型研究了偏压对载流子复合速率分布的影响及太阳能电池结构对光电转换性能的影响。计算得到了在100 mW/cm2激光功率密度下太阳能电池的电流密度-电压曲线。研究结果表明, 随着正向偏压的增大, 空间电荷区的复合速率迅速增大, 因此正向偏压是影响激光电转换效率的主要因素; 电池的短路电流随着pn结深的增大呈指数衰减, 而开路电压随着基区厚度的增大先增大后趋于饱和。这些研究为太阳能电池的设计提供了参考。

Abstract

The output characteristics of the one-dimensional In0.3Ga0.7As solar cells irradiated by a continuous wave (CW) laser with a wavelength of 1070 nm are studied by the finite element numerical simulation method. The validity of the model is verified by the calculation of the distribution of the recombination rate of the internal carrier in solar cells under a zero-bias. The effect of the bias voltage on the carrier recombination rate distribution and the influence of the structure of the solar cell on the photoelectric conversion performance are studied, and the current density-voltage curve of the solar cell is obtained under a laser power density of 100 mW·cm-2. The research results show that, with the increase of the forward bias, the recombination rate in the space charge region increases rapidly, so the forward bias is the main factor which influences the conversion efficiency. The short-circuit current of the cell decreases exponentially with the increase of the depth of the pn junction, however the open circuit voltage increases first and then tends to saturation with the increase of the thickness of the base area. These results provide a reference for the design of solar cells.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/lop55.101601

所属栏目:材料

基金项目:国防基础科研计划(JCKY2016606C002)、上海航天科技创新基金(SAST20161113)

收稿日期:2018-03-16

修改稿日期:2018-04-05

网络出版日期:2018-05-09

作者单位    点击查看

李广济:南京理工大学理学院, 江苏 南京 210094
陆健:南京理工大学理学院, 江苏 南京 210094
王程民:南京理工大学理学院, 江苏 南京 210094淮安信息职业技术学院机械工程学院, 江苏 淮安 223003
张宏超:南京理工大学理学院, 江苏 南京 210094
周大勇:上海空间电源研究所高效能量转换技术研究室, 上海 200245

联系人作者:张宏超(hongchao@njust.edu.cn); 李广济(ligj@njust.edu.cn); 陆健(lujian@mail.njust.edu.cn);

【1】Feng Y, Jiang H W, Zhang L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 2017, 44(2): 0201005.
冯衍, 姜华卫, 张磊. 高功率拉曼光纤激光器技术研究进展[J]. 中国激光, 2017, 44(2): 0201005.

【2】Sutherland J E, Hauser J R. A computer analysis of heterojunction and graded composition solar cells[J]. IEEE Transactions on Electron Devices, 1977, 24(4): 363-372.

【3】Durbin S M, Gray J L. Numerical modeling of photon recycling in solar cells[J]. IEEE Transactions on Electron Devices, 1994, 41(2): 239-245.

【4】Li X F, Hylton N P, Giannini V, et al. Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations[J]. Progress in Photovoltaics: Research and Applications, 2012, 21(1): 109-120.

【5】Shang A, Li X F. Photovoltaic devices: Opto-electro-thermal physics and modeling[J]. Advanced Materials, 2016, 29(8): 1603492.

【6】Li X F, Hylton N P, Giannini V, et al. Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells[J]. Optics Express, 2011, 19(54): A888-A896.

【7】Xie B S, Dai P, Luo X D, et al. IV characteristics and analysis for GaAs based single junction solar cells with different back surface fields[J]. Acta Optica Sinica, 2017, 37(2): 0223002.
谢波实, 代盼, 罗向东, 等. 不同背场的GaAs基单结太阳能电池伏安特性及分析[J]. 光学学报, 2017, 37(2): 0223002.

【8】Shi X, Sun C, Wang X Q. One-dimensional diffraction grating structure for rear reflection surface of thin film silicon solar cells[J]. Laser & Optoelectronics Progress, 2018, 55(1): 010501.
石鑫, 孙诚, 王晓秋. 适用于薄膜硅太阳能电池背反射面的一维衍射光栅结构[J]. 激光与光电子学进展, 2018, 55(1): 010501.

【9】Lu H D, Tie S N, Liu J. Absorption enhancement of crystalline silicon thin film solar cell using nano binary silver grating[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080401.
卢辉东, 铁生年, 刘杰. 银纳米光栅增加晶体硅薄膜太阳能电池光吸收的研究[J]. 激光与光电子学进展, 2016, 53(8): 080401.

【10】Matt P. Study of LED luminous efficiency by multi physical field simulation[EB/OL]. (2014-12-03)[2018-01-05]. http:∥cn.comsol.com/blogs/investigating-led-efficiency-via-multiphysics-simulation/.

【11】Nelson J. The physics of solar cells[M]. Gao Y, Transl. Shanghai: Shanghai Jiao Tong University Press, 2011.
Nelson J. 太阳能电池物理[M]. 高扬, 译. 上海: 上海交通大学出版社, 2011.

【12】Li G X, Sun L J, Chen M J, et al. Physics power technology[M]. Beijing: Science Press, 2015.
李国欣, 孙利杰, 陈萌炯, 等. 物理电源技术[M]. 北京: 科学出版社, 2015.

【13】Bhattacharya P, Yang L Y. Semiconductor optoelectronic devices[M]. Englewood: Prentice Hall, 1996.

【14】Liu E K, Zhu B S, Luo J S. The physics of semiconductors[M]. 7th ed. Beijing: Publishing House of Electornics Industry, 2016.
刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 第7版. 北京: 电子工业出版社, 2016.

【15】Deng Q W, Huang Y G, Zhu H L. Newest achievement of more than 25% conversion efficiency with crystalline silicon-base solar cell[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110002.
邓庆维, 黄永光, 朱洪亮. 25%效率晶体硅基太阳能电池的最新进展[J]. 激光与光电子学进展, 2015, 52(11): 110002.

【16】Wang Y, Wang X, Li L W. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.
王玥, 王暄, 李龙威. 基于表面等离激元薄膜太阳能电池陷光特性的研究[J]. 激光与光电子学进展, 2015, 52(9): 092401.

【17】Araújo G L, Marti A. Absolute limiting efficiencies for photovoltaic energy conversion[J]. Solar Energy Materials and Solar Cells, 1994, 33(2): 213-240.

引用该论文

Li Guangji,Lu Jian,Wang Chengmin,Zhang Hongchao,Zhou Dayong. Simulation of Laser Irradiation of One-Dimensional In0.3Ga0.7As Solar Cells[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101601

李广济,陆健,王程民,张宏超,周大勇. 一维In0.3Ga0.7As太阳能电池的激光辐照模拟[J]. 激光与光电子学进展, 2018, 55(10): 101601

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF