首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:102801--1)

应用于窄带钠风温探测激光雷达的稳频和移频方法

Laser Frequency Stabilization and Shifting Applied in Narrowband Sodium Lidar System for Wind and Temperature Measurement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

钠多普勒激光雷达通过发射单模窄线宽的589 nm脉冲激光, 激发80~110 km高度大气中存在的碱金属钠原子获得共振荧光散射回波信号, 可实现中层顶区域大气参数的探测。激光稳频和移频是窄带钠多普勒激光雷达实现中层顶大气风场和温度高分辨探测的关键技术。本文介绍了一种应用于钠激光雷达系统的种子激光稳频和移频方法, 利用归一化的饱和吸收光谱信号实现了589 nm种子激光频率的精确锁定, 频率长期稳定在2.2 MHz左右; 通过级联双通声光移频装置的设计获得了钠原子D2线光谱上三个工作频率的窄线宽激光输出。通过钠多普勒激光雷达的探测实验, 获得了高分辨率的钠层风场和温度探测结果, 并将温度探测结果与卫星探测结果进行了对比。

Abstract

The sodium lidar can achieve atmospheric parameters measurement in the mesosphere by emitting a single-mode narrow-linewidth 589 nm pulsed laser to stimulate the alkali metal sodium atoms in the atmosphere at 80-110 km altitude and obtain the resonance fluorescence scattering echo signal. Laser frequency stabilization and shifting are the key technologies for the narrow-band sodium Doppler lidar to realize mesosphere atmosphere wind and temperature detection with high resolution. This paper introduces the methods of seed laser frequency stabilization and shifting applied in a sodium lidar system. The precise locking of 589 nm seed laser frequency is achieved using the normalized saturation absorption spectrum signal, and the long-term stability of laser frequency is about 2.2 MHz; three laser operating frequencies on the sodium D2 line spectrum are obtained by designing a cascaded double-pass acousto-optic frequency shift device. Through the experiment with sodium Doppler lidar, the wind and temperature measurement results with high resolution are obtained, and the temperature profile from lidar is compared with the result measured by satellite.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN958.98

DOI:10.3788/lop55.102801

所属栏目:遥感与传感器

基金项目:国家自然科学基金(41127901)、南京晓庄学院人才引进科研基金(4177022)

收稿日期:2018-03-16

修改稿日期:2018-04-27

网络出版日期:2018-05-07

作者单位    点击查看

夏媛:南京晓庄学院电子工程学院, 江苏 南京 211171
程学武:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071
李发泉:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071
李亚娟:南京晓庄学院电子工程学院, 江苏 南京 211171

联系人作者:夏媛(xiayuanxxyy@163.com)

【1】Plane J M C, Gardner C S, Yu J, et al. Mesospheric Na layer at 40°N: modeling and observations[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D3): 3773-3788.

【2】Chu X Z, Papen G. Resonance fluorescence lidar for measurements of the middle and upper atmosphere[M]∥Fujii T, Fukuchi T. Laser Remote Sensing.1 st ed. Boca Raton: CRC Press, 2005: 235-240.

【3】Bills R E, Gardner C S, She C Y. Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere[J]. Optical Engineering, 1991, 30(1): 13-21.

【4】Kaifler B. Na Lidar at ALOMAR: electrooptic improvements, analysis algorithms, and selected atmospheric observations 80 to 100 km above Northern Norway[D]. Ulm: Ulm University, 2009.

【5】She C Y, Yu J R. Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region[J]. Geophysical Research Letters, 1994, 21(17): 1771-1774.

【6】She C Y, Sherman J, Yuan T, et al. The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind[J]. Geophysical Research Letters, 2003, 30(6): 1319-1323.

【7】Hu X, Yan Z A, Guo S Y, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chinese Science Bulletin, 2011, 56(4/5): 417-423.

【8】Li T, Fang X, Liu W, et al. Narrowband sodium lidar for the measurements of mesopause region temperature and wind[J]. Applied Optics, 2012, 51(22): 5401-5411.

【9】Xia Y, Du L F, Cheng X W, et al. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region[J]. Optics Express, 2017, 25(5): 5264-5278.

【10】Xia Y, Wang Z L, Cheng X W, et al. All-solid-state narrowband sodium lidar system and preliminary result[J]. Chinese Journal of Lasers, 2015, 42(s1): s113003.
夏媛, 王泽龙, 程学武, 等. 全固态窄带钠层荧光激光雷达系统及初步观测结果[J]. 中国激光, 2015, 42(s1): s113003.

【11】Li F Q, Yang Y, Cheng X W, et al. The techniques and progress of wind and temperature lidar in WIPM[C]∥The 27th International Laser Radar Conference, July 10, 2015, New York, USA. Les Ulis: EDP Sciences, 2016, 119: 12002.

【12】Xiang J F, Wang L G, Li L, et al. Automatic frequency stabilization system of external cavity diode laser based on digital signal processing technology[J]. Acta Optica Sinica, 2017, 37(9): 0914002.
项静峰, 王利国, 李琳, 等. 基于DSP技术的外腔半导体激光器自动稳频系统[J]. 光学学报, 2017, 37(9): 0914002.

【13】Yu Q, Xiong W, Zhang Y, et al. Design and implementation of miniaturized frequency-stabilized laser system with low power consumption[J]. Chinese Journal of Lasers, 2016, 43(8): 0801010.
于齐, 熊炜, 张胤, 等. 低功耗、小型化稳频激光系统的设计与实现[J]. 中国激光, 2016, 43(8): 0801010.

【14】Yuan D D, Hu S L, Liu H H, et al. Research of laser frequency stabilization[J]. Laser & Optoelectronics Progress, 2011,48(8): 081401.
苑丹丹, 胡姝玲, 刘宏海, 等. 激光器稳频技术研究[J]. 激光与光电子学进展, 2011, 48(8): 081401.

【15】Qu Z, Zhang L, Tong S F, et al. Insertion loss characteristics of acousto-optic frequency shifter in optical phase-locked loop and its optimization[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100609.
曲正, 张磊, 佟首峰, 等. 光锁相环路中声光移频器插入损耗特性研究及优化[J]. 激光与光电子学进展, 2017, 54(10): 100609.

引用该论文

Xia Yuan,Cheng Xuewu,Li Faquan,Li Yajuan. Laser Frequency Stabilization and Shifting Applied in Narrowband Sodium Lidar System for Wind and Temperature Measurement[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102801

夏媛,程学武,李发泉,李亚娟. 应用于窄带钠风温探测激光雷达的稳频和移频方法[J]. 激光与光电子学进展, 2018, 55(10): 102801

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF