首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:101501--1)

基于旋转不变Faster R-CNN的低空装甲目标检测

Low Altitude Armored Target Detection Based on Rotation Invariant Faster R-CNN

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对机动变换的装甲目标进行快速精确检测是低空无人机的一项重要性能要求, 但目前主流检测方法自身的旋转不变性不能有效应对这一挑战。结合深度卷积神经网络(CNN)提出基于旋转不变Faster R-CNN的低空装甲目标检测方法, 该方法在Faster R-CNN框架的基础上引入旋转不变层, 通过在模型的目标函数上增加正则化约束条件来加强目标CNN特征旋转前后的不变性。实验选取三种典型的装甲目标缩比模型, 在室内外模拟不同场景条件下的低空侦察环境, 利用偏振高光谱相机获取目标的侦察模拟图像作为样本数据用于模型验证。在多模型对比实验中, 改进模型的平均检测准确率提升了2.4%, 取得了最好的检测效果, 初步验证了改进方法的有效性。

Abstract

Fast and accurate detection of maneuvering armored targets is an important performance requirement for low altitude unmanned aerial vehicles, but the rotation invariance of the current mainstream detection methods is not enough to deal with the challenge effectively. Combined with deep convolution neural network (CNN), we propose a low altitude armored target detection method based on rotation invariant Faster R-CNN. This method introduces the rotation invariant layer on the basis of the original frame of Faster R-CNN to strengthen the invariance of the target′s CNN feature before and after rotation by adding regularization constraints on the objective function of the model. In the experiment, three typical models of armored target are selected to simulate the low altitude reconnaissance environment under different scenes indoors and outdoors, reconnaissance simulated images of the targets are used as sample data for model verification, which are obtained by using a polarizing hyperspectral camera. In the multi model comparison test, the improved model increases the mean average precision by 2.4% on the original basis and achieves the best test result, which preliminary verifies the effectiveness of the improved method.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391;TN911.73

DOI:10.3788/lop55.101501

所属栏目:机器视觉

基金项目:国家自然科学基金(61379105)、中国博士后科学基金(2016M592961)、安徽省自然科学基金(1608085MF140)

收稿日期:2018-03-19

修改稿日期:2018-04-16

网络出版日期:2018-04-23

作者单位    点击查看

曹宇剑:中国人民解放军陆军炮兵防空兵学院, 安徽 合肥 230031
徐国明:中国人民解放军陆军炮兵防空兵学院, 安徽 合肥 230031安徽新华学院信息工程学院, 安徽 合肥 230088
史国川:中国人民解放军陆军炮兵防空兵学院, 安徽 合肥 230031

联系人作者:徐国明(xgm121@163.com)

【1】Jiang C S. Key technologies for integrated reconnaissance and attack system of UAVs[J]. Electronics Optics & Control, 2011, 18(2): 1-7.
姜长生. 无人机侦察/打击一体化的关键技术[J]. 电光与控制, 2011, 18(2): 1-7.

【2】Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893.

【3】Felzenszwalb P, Mcallester D, Ramanan D. A discriminatively trained, multiscale, deformable part model[C]∥IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008:1-8.

【4】Everingham M, van Gool L, Williams C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.

【5】Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems, 2012: 1097-1105.

【6】Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.

【7】He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.

【8】Girshick R. Fast R-CNN[C]∥IEEE International Conference on Computer Vision, 2015: 1440-1448.

【9】Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

【10】Dai J F, Li Y, He K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]∥Advances in Neural Information Processing Systems, 2016: 379-387.

【11】He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]∥IEEE International Conference on Computer Vision, 2017: 2980-2988.

【12】Liu F, Shen T S, Ma X X. Convolutional neural network based multi-band ship target recognition with feature fusion[J]. Acta Optica Sinica, 2017, 37(10): 1015002.
刘峰, 沈同圣, 马新星. 特征融合的卷积神经网络多波段舰船目标识别[J]. 光学学报, 2017, 37(10): 1015002.

【13】Cai Y Z, Yang D D, Mao N, et al. Visual tracking algorithm based on adaptive convolutional features[J]. Acta Optica Sinica, 2017, 37(3): 0315002.
蔡玉柱, 杨德东, 毛宁, 等. 基于自适应卷积特征的目标跟踪算法[J]. 光学学报, 2017, 37(3): 0315002.

【14】Wei Y M, Quan J C, Hou Y Q Y. Aerial image location of unmanned aerial vehicle based on YOLO v2[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111002.
魏湧明, 全吉成, 侯宇青阳. 基于YOLO v2的无人机航拍图像定位研究[J]. 激光与光电子学进展, 2017, 54(11): 111002.

【15】Zou Y B, Zhou W L, Chen X Z. Research of laser vision seam detection and tracking system based on depth hierarchical feature[J]. Chinese Journal of Lasers, 2017, 44(4): 0402009.
邹焱飚, 周卫林, 陈向志. 基于深度分层特征的激光视觉焊缝检测与跟踪系统研究[J]. 中国激光, 2017, 44(4): 0402009.

【16】Ma W J. Research on multi-dimensional information extraction and object detection algorithms of polarized hyperspectral images[D]. Harbin: Harbin Institute of Technology, 2014.
马文静. 偏振高光谱图像多维度信息提取及目标检测算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

【17】Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

【18】Cheng G, Zhou P C, Han J W. RIFD-CNN: Rotation-invariant and Fisher discriminative convolutional neural networks for object detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2884-2893.

【19】LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.

【20】Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255.

【21】Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]∥European Conference on Computer Vision, 2014: 818-833.

引用该论文

Cao Yujian,Xu Guoming,Shi Guochuan. Low Altitude Armored Target Detection Based on Rotation Invariant Faster R-CNN[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101501

曹宇剑,徐国明,史国川. 基于旋转不变Faster R-CNN的低空装甲目标检测[J]. 激光与光电子学进展, 2018, 55(10): 101501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF