首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:100001--1)

光平衡探测器研究进展和发展趋势分析

Research Progress and Development Trend of Balanced Photodetectors

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

平衡相干检测技术能够大幅度提高光通信系统的灵敏度, 在相干光通信和微波光子系统中得到广泛应用。作为相干检测的核心器件, 平衡探测器近年来已成为研究热点。阐述了平衡探测器的工作原理、器件结构和性能参数, 概述了平衡探测器的最新研究进展, 并对平衡探测器发展过程中存在的问题和发展趋势进行了分析。随着光通信技术的发展, 平衡探测器将在高速率、高射频功率、高响应度和高共模抑制比等方面不断优化, 封装模块将朝着高集成度、低成本和低功耗方向发展。

Abstract

Balanced coherent detection technology is widely used in coherent optical communication and microwave photonic systems because the sensitivity can be significantly improved by the technology. Balanced photodetector, as a key device for coherent detection, has been the workhorse of research in recent years. This paper introduces the principle, structure and some parameters of balanced photodetectors and provides an overview on recent advances of the device, with analysis on current problems and development trends. With the development of optical communication technology, the performance of balanced photodetectors will be promoted in terms of speed, responsivity, radio frequency power, and common mode rejection ratio. Moreover, the package module should be highly integrated, with lower cost and lower power consumption in the future.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.14

DOI:10.3788/lop55.100001

所属栏目:综述

基金项目:国家自然科学基金(61527820,11674313,61535014,61727815,61625504)、国家科技部973与重点研发计划(2017YFF0104601, 2014CB340102)

收稿日期:2018-03-19

修改稿日期:2018-04-20

网络出版日期:2018-04-25

作者单位    点击查看

王姣姣:中国科学院半导体研究所集成光电子国家重点实验室, 北京 100083中国科学院大学材料科学与光电技术学院, 北京 100049
赵泽平:中国科学院半导体研究所集成光电子国家重点实验室, 北京 100083中国科学院大学材料科学与光电技术学院, 北京 100049
刘建国:中国科学院半导体研究所集成光电子国家重点实验室, 北京 100083中国科学院大学电子电气与通信工程学院, 北京 100049

联系人作者:刘建国(jgliu@semi.ac.cn); 王姣姣(wjj16@semi.ac.cn);

【1】Rohde M, Caspar C, Heimes N, et al. Robustness of DPSK direct detection transmission format in standard fibre WDM systems[J]. Electronics Letters, 2000, 36(17): 1483-1484.

【2】Winzer P J, Chandrasekhar S, Kim H. Impact of filtering on RZ-DPSK reception[J]. IEEE Photonics Technology Letters, 2003, 15(6): 840-842.

【3】Winzer P J, Essiambre R J. Advanced modulation formats for high-capacity optical transport networks[J]. Journal of Lightwave Technology, 2006, 24(12): 4711-4728.

【4】Arnon S. Power versus stabilization for laser satellite communication[J]. Applied Optics, 1999, 38(15): 3229-3233.

【5】Heine F, Hildebrand U, Lange R, et al. 5.6 Gbps optical intersatellite communication link[J]. Proceedings of SPIE, 2009, 7199: 719906.

【6】Jono A T, Takayama Y, Shiratama K, et al. Overview of the inter-or-bit and orbit-to-ground laser communication demonstration by OICE-TS[J]. Proceedings of SPIE, 2007, 6457: 645702.

【7】Kim H J, Leaird D E, Weiner A W. Improved RF performance of a comb-based microwave photonic filter using a balanced photodetector[C]∥IEEE International Topical Meeting on Microwave Photonics (MWP), 2013: 80-83.

【8】Zhang W, Wen A J, Gao Y S, et al. Large bandwidth photonic microwave image rejection mixer with high conversion efficiency[J]. IEEE Photonics Journal, 2017, 9(3): 2681663.

【9】Meijerink A, Roeloffzen C G H, Meijerink R, et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part I: design and performance analysis[J]. Journal of Lightwave Technology, 2010, 28(1): 3-18.

【10】Joshi A, Becker D, Wree C, et al. Coherent optical receiver system with balanced photo-detection[J]. Proceedings of SPIE, 2016, 6243: 62430E.

【11】Chan V W. Free-space optical communications[J]. Journal of Lightwave Technology, 2006, 24(12): 4750-4762.

【12】Bach H G. Ultra-broadband photodiodes and balanced detectors towards 100 Gbit/s and beyond[C]. Proceedings of SPIE, 2005, 6014: 60140B.

【13】Sinsky J H, Adamiecki A, Gnauck A, et al. A 42.7-Gb/s integrated balanced optical front end with record sensitivity[C]∥Optical Fiber Communications Conference, IEEE, 2003: PD39-P1-3.

【14】Painchaud Y, Pelletier M, Poulin M, et al. Ultra-compact coherent receiver based on hybrid integration on silicon[C]∥Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013: OMJ.2.

【15】Liu H Y, Zhang Y G, Ai Y, et al. Design and implementation of balance detector used in coherent optical communication system[J]. Laser & Optoelectronics Progress, 2014, 51(7): 070601.
刘宏阳, 张燕革, 艾勇, 等. 用于相干光通信的平衡探测器的设计与实现[J]. 激光与光电子学进展, 2014, 51(7): 070601.

【16】Dai Y H, Ai Y, Xiao W, et al. The research of balance detector for high-speed coherence optical communications[J]. Acta Photonica Sinica, 2015, 44(1): 0125002.
代永红, 艾勇, 肖伟, 等. 高速相干光通信平衡探测器研究[J]. 光子学报, 2015, 44(1): 0125002.

【17】Liang H X, Dai Y H, Ai Y, et al. Design and test of space optical coupling balance detector[J]. Infrared and Laser Engineering, 2017, 46(3): 196-202.
梁赫西, 代永红, 艾勇, 等. 空间光耦合平衡探测器设计与测试[J]. 红外与激光工程, 2017, 46(3): 196-202.

【18】Carleton H R, Maloney W T. A balanced optical heterodyne detector[J]. Applied Optics, 1968, 7(6): 1241-1246.

【19】Abbas G L, Chan V W, Yee S, et al. A dual-detector optical heterodyne receiver for local oscillator noise suppression[J]. Journal of Lightwave Technology, 1985, 3(5): 1110-1122.

【20】Jacobsen G, Kan J X, Garrett I. Tuned front-end design for heterodyne optical receivers[J]. Journal of Lightwave Technology, 1989, 7(1): 105-114.

【21】Beling A. High-power microwave photodiodes[C]∥Optical Fiber Communication Conference and Exhibition, OSA, 2014: Tu2A.4.

【22】Cross A S, Zhou Q G, Beling A, et al. High power flip-chip mounted photodiode array[J]. Optics Express, 2013, 21(8): 9967-9973.

【23】Li Q L, Li K J, Fu Y, et al. High-power flip-chip bonded photodiode with 110 GHz bandwidth[J]. Journal of Lightwave Technology, 2016, 34(9): 2139-2144.

【24】Runge P, Zhou G, Beckerwerth T, et al. InP-based waveguide integrated photodetectors[C]∥Photonics Conference, IEEE, 2017: 256-257.

【25】Zhou G, Runge P, Lankes S, et al. Waveguide integrated pin-photodiode array with high power and high linearity[C]∥International Topical Meeting on Microwave Photonics, IEEE, 2015: 1-4.

【26】Beling A, Xie X J, Campbell J C. High-power, high-linearity photodiodes[J]. Optica, 2016, 3(3): 328-338.

【27】Ishibashi T, Muramoto Y, Yoshimatsu T, et al. Unitraveling-carrier photodiodes for terahertz applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 3804210.

【28】Li Z, Pan H, Chen H, et al. High-saturation-current modified uni-traveling-carrier photodiode with cliff layer[J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 626-632.

【29】Houtsma V, Hu T, Weimann N G, et al. A 1 W linear high-power InP balanced uni-traveling carrier photodetector[C]∥37th European Conference and Exposition on Optical Communications, IEEE, 2011: Tu.3.LeSaleve.6.

【30】Zhou Q G, Cross A S, Fu Y, et al. Balanced InP/InGaAs photodiodes with 1.5-W output power[J]. IEEE Photonics Journal, 2013, 5(3): 6800307.

【31】Xie X J, Zhou Q G, Norberg E, et al. High-power heterogeneously integrated waveguide-coupled balanced photodiodes on silicon-on-insulator[C]∥IEEE Photonics Conference, IEEE, 2015: 468-469.

【32】Li Z, Chen H, Pan H P, et al. High-power integrated balanced photodetector[J]. IEEE Photonics Technology Letters, 2009, 21(24): 1858-1860.

【33】Beling A, Cross A S, Zhou Q G, et al. High-power flip-chip balanced photodetector with >40 GHz bandwidth[C]∥IEEE Photonics Conference, IEEE, 2013: 352-353.

【34】Zhou Q G, Cross A S, Beling A, et al. High power balanced InGaAs/InP photodetector flip-chip bonded on diamond[C]∥Integrated Photonics Research, Silicon and Nanophotonics, OSA, 2013: IW5A.5.

【35】Beling A, Chen H, Duan N, et al. 10 GHz balanced photodetector with +17 dBm RF output power[C]∥33rd European Conference and Exhibition on Optical Communication (ECOC), 2007: 1-2.

【36】Zhou G, Runge P, Keyvaninia S, et al. High-power InP-based waveguide integrated modified uni-traveling-carrier photodiodes[J]. Journal of Lightwave Technology, 2017, 35(4): 717-721.

【37】Wang Y, Yu Q, Xie X J, et al. InP-based balanced photodiodes heterogeneously integrated on SOI nano-waveguides[C]∥IEEE International Topical Meeting on Microwave Photonics (MWP), IEEE, 2016: 237-240.

【38】Xie X J, Zhou Q G, Norberg E, et al. Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12 dBm output power at 40 GHz[C]∥Optical Fiber Communication Conference and Exhibition (OFC), OSA, 2015: Th5B.7.

【39】Runge P, Zhou G, Beckerwerth T, et al. Waveguide integrated balanced photodetectors for coherent receivers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(2): 2723844.

【40】Schramm C, Bach H G, Beling A, et al. High-bandwidth balanced photoreceiver suitable for 40 Gb/s RZ-DPSK modulation formats[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(1): 127-134.

【41】Lischke S, Knoll D, Mai C, et al. High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode[J]. Optics Express, 2015, 33: 27213-27220.

【42】Verbist J, Verplaetse M, Srivinasan S A, et al. First real-time 100 Gb/s NRZ-OOK transmission over 2 km with a silicon photonic electro-absorption modulator[C]∥Optical Fiber Communications Conference and Exhibition (OFC), OSA, 2017: Th5C.4.

【43】Schell M, Bach H G, Janiak K, et al. Coherent receiver photonic integrated circuits[C]∥Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA, 2013: OW3J.6.

【44】Doerr C, Winzer P, Chen Y, et al. Monolithic polarization and phase diversity coherent receiver in silicon[J]. Journal of Lightwave Technology, 2010, 28(4): 520-525.

【45】Doerr C, Buhl L, Baeyens Y, et al. Packaged monolithic silicon 112-Gb/s coherent receiver[J]. IEEE Photonics Technology Letters, 2011, 23(12): 762-764.

【46】Mohammed S H, Meer N S, Odile L L. A 16 GHz silicon-based monolithic balanced photodetector with on-chip capacitors for 25 Gbaud front-end receivers[J]. Optics Express, 2013, 21(26): 32680-32689.

【47】Runge P, Stefan S, Angela S, et al. Monolithic InP receiver chip with a 90° hybrid and 56 GHz balanced photodiodes[C]∥European Conference and Exhibition on Optical Communication, OSA, 2012: Mo.2.E.3.

【48】Takechi M, Tateiwa Y, Kurokawa M, et al. 64 GBaud high-bandwidth micro intradyne coherent receiver using high-efficiency and high-speed InP-based photodetector integrated with 90° hybrid[C]∥Optical Fiber Communications Conference and Exhibition (OFC), OSA, 2017: Th1A.2.

【49】Zhang Z Y, Felipe D, Katopodis V, et al. Hybrid photonic integration on a polymer platform[J]. Photonics, 2015, 2(3): 1005-1026.

【50】Zhao Z P, Liu Y, Zhang Z K, et al. 1. 5 μm, 8×12. 5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application[J]. Chinese Optics Letters, 2016, 15(12): 120603.

引用该论文

Wang Jiaojiao,Zhao Zeping,Liu Jianguo. Research Progress and Development Trend of Balanced Photodetectors[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100001

王姣姣,赵泽平,刘建国. 光平衡探测器研究进展和发展趋势分析[J]. 激光与光电子学进展, 2018, 55(10): 100001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF