首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:101503--1)

基于多信息的疲劳状态识别方法

A Multi-Information-Based Fatigue State Recognition Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于机器视觉的疲劳检测方法具有非侵入性、快速、准确、全天候可操作等特点, 逐步成为国内外研究热点, 但该方法容易受复杂光照、驾驶员位姿变化的影响。针对此问题, 对复杂光照和位姿变化对驾驶员疲劳检测的影响进行了深入研究, 提出基于实时增强约束局部模型的多信息疲劳检测方法。对采集得到的图像进行实时高动态范围增强处理; 对增强后的图像进行驾驶员人脸建模, 提取驾驶员的视线、眼部PERCLOS特征; 最后建立基于贝叶斯置信网络的多信息融合的疲劳状态检测识别方法。实验结果表明, 该方法对于复杂光照和位姿变化情况下的驾驶员疲劳状态检测具有较强的稳健性。

Abstract

Human fatigue detection based on the machine vision methods is non-invasive, fast, and accurate and is unhindered by weather conditions. Owing to these advantages, this technique has gradually become a hot research topic worldwide. However, it is easily affected by complicated illumination and changes in the pilot position. To solve this problem, on the basis of previous studies on driver fatigue detection under complicated illumination conditions and postural changes, we propose a fatigue detection method based on the real-time enhanced constraint local model. First, the collected images are subjected to real-time high-dynamic-range enhancement. Then, the enhanced image is used to model the driver′s face in order to extract his/her vision and percentage of eye closure characteristics. Finally, the fatigue state is detected and an identification method based on Bayesian confidence networks is established. Our experimental findings show that the proposed method robustly detects the fatigue states of drivers under complex illumination and change in position.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.41

DOI:10.3788/lop55.101503

所属栏目:机器视觉

基金项目:新疆维吾尔自治区自然科学基金(2016D01C060)

收稿日期:2018-03-19

修改稿日期:2018-04-11

网络出版日期:2018-05-07

作者单位    点击查看

李长勇:新疆大学机械工程学院, 新疆 乌鲁木齐 830047
吴金强:新疆大学机械工程学院, 新疆 乌鲁木齐 830047
房爱青:新疆大学机械工程学院, 新疆 乌鲁木齐 830047

联系人作者:李长勇(2275160866@qq.com)

【1】Hu F. Application of multi-source information fusion in driving fatigue detection [D]. Huainan: Anhui University of Science and Technology, 2014: 15-26.
胡峰. 多源信息融合在驾驶疲劳检测中的应用[D]. 淮南: 安徽理工大学, 2014: 15-26.

【2】NHTSA. Drowsy driving and automobile crashes report [R]. 1998: 24-49.

【3】Zhang W. Key issues of driver fatigue identification based on machine vision [D]. Beijing: Tsinghua University, 2011: 199-204.
张伟. 基于机器视觉的驾驶人疲劳状态识别关键问题研究[D]. 北京: 清华大学, 2011: 199-204.

【4】Tasaki M, Sakai M, Watanabe M. Evaluation of drowsiness during driving using electrocardiogram-a driving simulation study[C]∥10th International Conference on Computer and Information Technology, IEEE, 2010: 1480-1485.

【5】Ramesh M V, NairA K, Kunnathu A T. Intelligent steering wheel sensor network for real-time monitoring and detection of driver drowsiness[J]. International Journal of Computer Science and Security, 2011, 1(3): 1-9.

【6】Wang F, Wang S N, Wang X H, et al. Driving fatigue detection based on EEG recognition and vehicle handling characteristics[J]. Chinese Journal of Scientific Instrument, 2014, 35(2): 398-404.
王斐, 王少楠, 王惜慧, 等. 基于脑电图识别结合操纵特征的驾驶疲劳检测[J]. 仪器仪表学报, 2014, 35(2): 398-404.

【7】Malla A M, Davidson P R, Bones P J. Automated video-based measurement of eye closure for detecting behavioral microsleep[C]∥Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, 2010: 6741-6744.

【8】Hirata Y, Nishiyama J, Kinoshita S. Detection and prediction of drowsiness by reflexive eye movements[C]∥Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, 2009: 4015-4018.

【9】Vural E, Bartlett M, Littlewort G. Discrimination of moderate and acute drowsiness based on spontaneous facial expressions[C]∥20th International Conference on Pattern Recognition, 2010: 3874-3877.

【10】Li M. Driver fatigue detection method based on eye and mouth features fusion[D]. Hangzhou: Zhejiang Normal University, 2011: 52-60.
李敏. 基于眼部和嘴部特征融合的驾驶员疲劳检测方法研究[D]. 杭州: 浙江师范大学, 2011: 52-60.

【11】Cheng B, Meng C, Zhang W.A study on driver distraction detection technology based on computer vision[J]. Automotive Engineering, 2009, 31(12): 1137-1140.
成波, 孟传, 张伟. 基于机器视觉的驾驶员注意力状态监测技术研究[J]. 汽车工程, 2009, 31(12): 1137-1140.

【12】Wang Y F. Research and application of multi view facial feature points localization[D]. Shanghai: Shanghai Jiao Tong University, 2015: 97-99.
汪亚芬. 多视角面部特征点定位研究与应用[D]. 上海: 上海交通大学, 2015: 97-99.

【13】Ibrahim L F, Abulkhair M, AlShomrani A D, et al. Using Haar classifiers to detect driver fatigue and provide alerts[J]. Multimedia Tools and Applications, 2014, 71(3): 1857-1877.

【14】Li J P, Niu Y X, Yang L, et al. Contactless driver fatigue detection and warning system based on eye state information[J]. Laser & Optoelectronics Progress, 2015, 52(4): 041101.
李建平, 牛燕雄, 杨露, 等. 基于人眼状态信息的非接触式疲劳驾驶监测与预警系统[J]. 激光与光电子学进展, 2015, 52(4): 041101.

【15】Yang G S, Lin Y Z, Bhattacharya P. A driver fatigue recognition model based on information fusion and dynamic Bayesian network[J]. Information Sciences, 2010, 180(10): 1942-1954.

【16】Zeng C C, Ren M J, Xiao G B, et al. Multi-scale stereo matching based on Bayesian reasoning[J]. Acta Optica Sinica, 2017, 37(12): 1215004.
曾灿灿, 任明俊, 肖高博, 等. 基于贝叶斯推理的多尺度双目匹配方法[J]. 光学学报, 2017, 37(12): 1215004.

【17】Fan Q, Zhang S X. Object shape classification based on improved Bayesian program learning[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121504.
范强, 张善新. 基于改进贝叶斯程序学习的物体形状分类[J]. 激光与光电子学进展, 2017, 54(12): 121504.

引用该论文

Li Changyong,Wu Jinqiang,Fang Aiqing. A Multi-Information-Based Fatigue State Recognition Method[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101503

李长勇,吴金强,房爱青. 基于多信息的疲劳状态识别方法[J]. 激光与光电子学进展, 2018, 55(10): 101503

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF