首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:100005--1)

基于点源模型计算全息图快速生成算法的研究进展

Progress of Fast Generation Algorithm of Computer-Generated Hologram Based on Point Source Model

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

计算全息图(CGH)的快速生成技术是全息三维显示系统的关键技术, 基于点源模型的计算全息图由于模型简单、操作灵活而成为了计算全息方法中一个重要分支。但是使用点源模型计算全息图计算量庞大, 为了达到实时显示的要求, 提高全息图计算速度的方法被不断提出。对点源模型快速算法的发展历程进行了综述。从计算全息图的原理出发, 根据点源模型快速算法的研究方向, 将其分为算法和算法与高性能硬件结合两大类。通过分析各类算法的实现方法和存在的问题, 指出了其改进的方向, 介绍了高性能硬件对计算全息图的贡献, 最后对点源模型快速算法的未来研究方向进行了展望。

Abstract

The rapid generation technology of computer-generated hologram (CGH) is the key technology of the holographic three-dimensional display system. The calculation of holograms based on point source model is an important branch of computational holography because of its simple model and flexible operation. However, the calculations of point source model for holograms are enormous. In order to meet the requirements of real-time display, the methods of improving the calculation speed of hologram have been put forward continuously. The development of the fast algorithm of point source model is reviewed. Based on the principle of CGH, according to the research direction of the fast algorithm of point source model, it is divided into two categories: algorithm, and combination of algorithm and high-performance hardware. Through the analysis of the implementation methods and existing problems of all kinds of algorithms, the direction of improvement is pointed out, and the contribution of high-performance hardware to CGH is introduced. Finally, the future research direction of point source model fast algorithm is prospected.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O438.1

DOI:10.3788/lop55.100005

所属栏目:综述

基金项目:国家自然科学基金(61565011, 61465005)、云南省自然科学基金(2014FB132)

收稿日期:2018-03-20

修改稿日期:2018-05-03

网络出版日期:2018-05-09

作者单位    点击查看

金晓宇:昆明理工大学理学院激光研究所, 云南 昆明 650500
桂进斌:昆明理工大学理学院激光研究所, 云南 昆明 650500
刘超:昆明理工大学理学院激光研究所, 云南 昆明 650500
郑立婷:昆明理工大学理学院激光研究所, 云南 昆明 650500
楼宇丽:昆明理工大学理学院激光研究所, 云南 昆明 650500

联系人作者:桂进斌(jinbingui@163.com)

【1】Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777-778.

【2】Zhu Y F. The direction of commercial laser holography[J]. Printing Technology, 2000(12): 76-77.
朱云峰. 商用激光全息发展方向[J]. 印刷技术, 2000(12): 76-77.

【3】Kozma A, Kelly D L. Spatial filtering for detection of signals submerged in noise[J]. Applied Optics, 1965, 4(4): 387-392.

【4】Armitage J D, Lohmann A W. Character recognition by incoherent spatial filtering[J]. Applied Optics, 1965, 4(4): 461-467.

【5】Lohmann A W, Paris D P. Binary Fraunhofer holograms, generated by computer[J]. Applied Optics, 1967, 6(10): 1739-1748.

【6】Goodman J W. Introduction to Fourier optics[M]. Qin K C, Liu P S, Chen J B, et al., Transl. 3rd ed. Beijing: Electronic Industry Press, 2011.
Goodman J W. 傅里叶光学导论[M]. 秦克诚, 刘培森, 陈家璧, 等, 译. 3版. 北京: 电子工业出版社, 2011.

【7】Li J C. Diffraction calculation and digital holography[M].Beijing: Science Press, 2014.
李俊昌. 衍射计算及数字全息[M]. 北京: 科学出版社, 2014.

【8】Jia J, Wang Y T, Liu J, et al. Progress of dynamic 3D display of the computer-generated hologram[J]. Laser & Optoelectronics Progress, 2012, 49(5): 050002.
贾甲, 王涌天, 刘娟, 等. 计算全息三维实时显示的研究进展[J]. 激光与光电子学进展, 2012, 49(5): 050002.

【9】Matsushima K, Nakahara S. Region segmentation and parallel processing for creating large-scale CGHs in polygon source method[J]. Proceedings of SPIE, 2009, 7233: 72330E.

【10】Nishi H, Higashi K, Arima Y, et al. Smooth shading of specular surfaces in polygon-based high-definition CGH[C]∥2011 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, May 16-18, 2011, Antalya, Turkey. New York: IEEE, 2011: 12070126.

【11】Zhang Y P, Zhang J Q, Chen W, et al. Fast computer generated hologram algorithm of triangle mesh models[J]. Chinese Journal of Lasers, 2013, 40(7): 0709001.
张亚萍, 张建强, 陈伟, 等. 基于三角模型的计算全息快速算法[J]. 中国激光, 2013, 40(7): 0709001.

【12】Liu C, Gui J B, Li J C, et al. Fast generation algorithm of computer-generated hologram based on triangular surface light source frequency spectrum analytic solutions[J]. Laser & Optoelectronics Progress, 2018, 55(1): 010901.
刘超, 桂进斌, 李俊昌, 等. 基于三角形面光源频谱解析解的计算全息图快速生成算法[J]. 激光与光电子学进展, 2018, 55(1): 010901.

【13】Matsushima K, Nakahara S. New techniques for wave-field rendering of polygon-based high-definition CGHs[J]. Proceedings of SPIE, 2011, 7957: 79571A.

【14】Lucente M E. Interactive computation of holograms using a look-up table[J]. Journal of Electronic Imaging, 1993, 2(1): 28-34.

【15】Kim S C, Kim E S. Effective generation of digital holograms of three-dimensional objects using a novel look-up table method[J]. Applied Optics, 2008, 47(19): D55-D62.

【16】Pan Y C, Xu X W, Solanki S, et al. Fast CGH computation using S-LUT on GPU[J]. Optics Express, 2009, 17(21): 18543-18555.

【17】Jia J, Wang Y T, Liu J, et al. Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display[J]. Applied Optics, 2013, 52(7): 1404-1412.

【18】Jiang X Y, Cong B, Pei C, et al. A new look-up table method of holographic algorithms based on compute unified device architecture parallel computing[J]. Acta Optica Sinica, 2015, 35(2): 0209001.
蒋晓瑜, 丛彬, 裴闯, 等. 一种基于新型查表方法的统一计算设备架构并行计算全息算法[J]. 光学学报, 2015, 35(2): 0209001.

【19】Shimobaba T, Masuda N, Ito T. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane[J]. Optics Letters, 2009, 34(20): 3133-3135.

【20】Shimobaba T, Nakayama H, Masuda N, et al. Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display[J]. Optics Express, 2010, 18(19): 19504-19509.

【21】Phan A H, Piao M L, Gil S K, et al. Generation speed and reconstructed image quality enhancement of a long-depth object using double wavefront recording planes and a GPU[J]. Applied Optics, 2014, 53(22): 4817-4824.

【22】Hasegawa N, Shimobaba T, Kakue T, et al. Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes[J]. Applied Optics, 2017, 56(1): A97-A103.

【23】Arai D, Shimobaba T, Nishitsuji T, et al. An accelerated hologram calculation using the wavefront recording plane method and wavelet transform[J]. Optics Communications, 2017, 393: 107-112.

【24】Shimobaba T, Masuda N, Sugie T, et al. Special-purpose computer for holography HORN-3 with PLD technology[J]. Computer Physics Communications, 2000, 130(1/2): 75-82.

【25】Shimobaba T, Hishinuma S, Ito T. Special-purpose computer for holography HORN-4 with recurrence algorithm[J]. Computer Physics Communications, 2002, 148(2): 160-170.

【26】Ito T, Masuda N, Yoshimura K, et al. Special-purpose computer HORN-5 for a real-time electroholography[J]. Optics Express, 2005, 13(6): 1923-1932.

【27】Ichihashi Y, Nakayama H, Ito T, et al. HORN-6 special-purpose clustered computing system for electroholography[J]. Optics Express, 2009, 17(16): 13895-13903.

【28】Masuda N, Hirai D, Okada N, et al. Special purpose computer for phase modulation type electro-holography[C]∥Forum on Information Technology 2012, September 4-6, 2012, Hosei University, Tokyo, Japan. Tokyo: IECIE, 11(1): 285-286.

【29】Watling J A, Lucente M E, Sparrell C J, et al. Hardware architecture for rapid generation of electro-holographic fringe patterns[J]. Proceedings of SPIE, 1995, 2406: 172-183.

【30】Ritter A, Bttger J, Deussen O, et al. Hardware-based rendering of full-parallax synthetic holograms[J]. Applied Optics, 1999, 38(8): 1364-1369.

【31】Ahrenberg L, Benzie P, Magnor M, et al. Computer generated holography using parallel commodity graphics hardware[J]. Optics Express, 2006, 14(17): 7636-7641.

【32】Chen R H Y, Wilkinson T D. Computer generated hologram from point cloud using graphics processor[J]. Applied Optics, 2009, 48(36): 6841-6850.

【33】Shimobaba T, Ito T, Masuda N, et al. Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL[J]. Optics Express, 2010, 18(10): 9955-9960.

【34】Takada N, Shimobaba T, Nakayama H, et al. Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system[J]. Applied Optics, 2012, 51(30): 7303-7307.

【35】Sugawara T, Ogihara Y, Sakamoto Y. Fast point-based method of a computer-generated hologram for a triangle-patch model by using a graphics processing unit[J]. Applied Optics, 2016, 55(3): A160-A166.

引用该论文

Jin Xiaoyu,Gui Jinbin,Liu Chao,Zheng Liting,Lou Yuli. Progress of Fast Generation Algorithm of Computer-Generated Hologram Based on Point Source Model[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100005

金晓宇,桂进斌,刘超,郑立婷,楼宇丽. 基于点源模型计算全息图快速生成算法的研究进展[J]. 激光与光电子学进展, 2018, 55(10): 100005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF