首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:101002--1)

基于哈希算法及生成对抗网络的图像检索

Image Retrieval Based on Hash Method and Generative Adversarial Networks

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

哈希方法是大规模图像检索中生成哈希码的有效方法。现有的哈希方法首先提取描述图像整体的特征, 然后生成哈希码, 但得到的哈希码并不精确。为了得到更精确的检索效果, 提出一种新的检索方法, 即采用卷积神经网络提取图像特征, 利用哈希算法与输入二进制噪声变量的生成对抗网络共同学习图像的二进制哈希码, 利用汉明距离对图像进行相似性比较, 最后完成对图像数据的有效检索。在标准图像数据集上进行实验, 结果证明, 该方法可以有效地进行图像检索, 相比现有的哈希方法, 该方法的检索性能也得到了提升。

Abstract

Hash method is an effective method for generating hash codes in large-scale image retrieval. The current hash method extracts the characteristics of the whole image first and then generates hash code, but the obtained hash code is not very precise to obtain more precise retrieval effect. Aiming at this problem, we propose a new method. First, we use a convolutional neural network to extract image features. Then, we adopt hash algorithm and generative adversarial network of input binary noise variable to learn image binary hash code, and carry out image similarity comparison by using hamming distance. Finally, we complete the effective retrieval of image data. Experiments on standard image data sets show that this method can effectively perform image retrieval, and the retrieval performance is improved than other methods.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/lop55.101002

所属栏目:图像处理

基金项目:国家自然科学基金(61702241)、辽宁省教育厅高等学校基本科研项目(LJ2017FBL004)、辽宁省教育厅科学研究一般项目(L2015225)、辽宁省博士科研启动基金(201601365)

收稿日期:2018-02-23

修改稿日期:2018-03-23

网络出版日期:2018-04-27

作者单位    点击查看

彭晏飞:辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105
武宏:辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105
訾玲玲:辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105

联系人作者:武宏(1028502590@qq.com)

【1】Cao Z, Long M, Wang J, et al. HashNet: deep learning to Hash by continuation[C]∥IEEE International Conference on Computer Vision, 2017: 5609-5618.

【2】Liu B, Zhang H. Image retrieval algorithm based on convolutional neural network and manifold ranking[J]. Journal of Computer Applications, 2016, 36(2): 531-534, 540.
刘兵, 张鸿. 基于卷积神经网络和流形排序的图像检索算法[J]. 计算机应用, 2016, 36(2): 531-534, 540.

【3】Liu Y, Pan Y, Xia R K, et al. FP-CNNH: a fast image hashing algorithm based on deep convolutional neural network[J]. Computer Science, 2016, 43(9): 39-46, 51.
刘冶, 潘炎, 夏榕楷, 等. FP-CNNH: 一种基于深度卷积神经网络的快速图像哈希算法[J]. 计算机科学, 2016, 43(9): 39-46, 51.

【4】Peng T Q, Li F. Image retrieval based on deep convolutional neural networks and binary hashing learning[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2068-2075.
彭天强, 栗芳. 基于深度卷积神经网络和二进制哈希学习的图像检索方法[J]. 电子与信息学报, 2016, 38(8): 2068-2075.

【5】Li W J, Zhou Z H. Learning to hash for big data: current status and future trends[J]. Chinese Science Bulletin, 2015, 60(Z1): 485-490.
李武军, 周志华. 大数据哈希学习: 现状与趋势[J]. 科学通报, 2015, 60(Z1): 485-490.

【6】Kan M N, Xu D, Shan S G, et al. Semisupervised hashing via kernel hyperplane learning for scalable image search[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(4): 704-713.

【7】Wang Y C, Guo J B, Zhou L Y. Image hash algorithm based on data dimension reduction and symmetric binary pattern[J]. Laser & Optoelectronics Progress, 2017, 54(2): 021004.
王彦超, 郭静博, 周丽宴. 基于数据降维与对称二值模式的图像Hash算法[J]. 激光与光电子学进展, 2017, 54(2): 021004.

【8】Norouzi M, Fleet D J. Minimal loss hashing for compact binary codes[C]∥Proceedings of the 28th International Conference on Machine Learning. 2011: 353-360.

【9】Strecha C, Bronstein A M, Bronstein M M, et al. LDAHash: improved matching with smaller descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 66-78.

【10】Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 2672-2680.

【11】Chen X, Duan Y, Houthooft R, et al. Infogan: interpretable representation learning by information maximizing generative adversarial nets[C]∥Advances in Neural Information Processing Systems, 2016: 2172-2180.

【12】Larsen A B L, Snderby S K, Larochelle H, et al. Autoencoding beyond pixels using a learned similarity metric[C]∥International Conference on Machine Learning, 2016: 1558-1566.

【13】Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv, 2015: 1511. 06434.

【14】Oquab M, Bottou L, Laptev I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1717-1724.

【15】Hou C C, He Y Q, Jiang X H, et al. Deep convolutional neural network based on two-stream convolutional unit[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021005.
侯聪聪, 何宇清, 姜晓恒, 等. 基于二分支卷积单元的深度卷积神经网络[J]. 激光与光电子学进展, 2018, 55(2): 021005.

【16】Li S M, Lei G Q, Fan R. Depth map super-resolution reconstruction based on convolutional neural networks[J]. Acta Optica Sinica, 2017, 37(12): 1210002.
李素梅, 雷国庆, 范如. 基于卷积神经网络的深度图超分辨率重建[J]. 光学学报, 2017, 37(12): 1210002.

【17】Zhu H, Long M, Wang J, et al. Deep Hashing network for efficient similarity retrieval[C]∥Thirtieth AAAI Conference on Artificial Intelligence, 2016: 2415-2421.

引用该论文

Peng Yanfei,Wu Hong,Zi Lingling. Image Retrieval Based on Hash Method and Generative Adversarial Networks[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101002

彭晏飞,武宏,訾玲玲. 基于哈希算法及生成对抗网络的图像检索[J]. 激光与光电子学进展, 2018, 55(10): 101002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF