首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:100701--1)

切割超连续谱实现实时、高速全光量化

Real-Time and High-Speed All-Optical Quantization by Slicing Supercontinuum Spectrum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

实验从时域上研究了切割超连续谱实现实时、高速全光量化的方案。利用光滤波器件对不同强度的光采样脉冲产生的超连续谱进行光谱分割, 从而实现对光采样脉冲的实时量化。具体来讲, 重复频率为10 GHz的光采样脉冲经功率放大后耦合到400 m的高非线性光纤中产生超连续谱, 采用3个可调谐的光滤波器对其进行不同波长的光谱切割, 实现采样率为10 GSa/s、量化精度为2 bit的实时全光量化, 量化后脉冲时序的消光比可达10 dB以上。

Abstract

A real-time and high-speed all-optical quantization scheme by slicing supercontinuum spectrum is studied experimentally in time domain. The optical filters are used to slice the supercontinuum spectrum generated by different intensity optical sampling pulses, so as to realize the real-time quantization of the optical sampling pulses. Optical sampling pulses with the repetition rate of 10 GHz are coupled into a 400-m highly nonlinear fiber after power amplification to generate supercontinuum spectrum, which is sliced by three tunable optical filters at different wavelengths. Real-time all-optical quantization with sampling rate of 10 GSa/s and quantization accuracy of 2 bits is realized based on slicing supercontinuum spectrum, and the extinction ratio among the quantized outputs can reach up to more than 10 dB.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN256

DOI:10.3788/lop55.100701

所属栏目:傅里叶光学与信号处理

基金项目:国家自然科学基金(61505137,61775158,61505136,61705159,61731014)、国家密码局“十三五”国家密码发展基金(MMJJ20170127)、山西省自然科学基金(2015021088)、中国博士后科学基金资助项目(2018M630283)

收稿日期:2018-03-30

修改稿日期:2018-04-09

网络出版日期:2018-04-25

作者单位    点击查看

郭亚:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
李璞:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024保密通信重点实验室, 四川 成都 610041中国电子科技集团公司第三十研究所, 四川 成都 610041
郭龑强:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
郭园园:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
郭晓敏:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
刘香莲:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
刘义铭:保密通信重点实验室, 四川 成都 610041中国电子科技集团公司第三十研究所, 四川 成都 610041
王云才:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024

联系人作者:李璞(lipu8603@126.com)

【1】Maruta A, Oda S I. Optical signal processing based on all-optical analog-to-digital conversion[J]. Optics and Photonics News, 2008, 19(4): 30-35.

【2】Walden R H. Analog-to-digital converter survey and analysis[J]. IEEE Journal on Selected Areas in Communications, 1999, 17(4): 539-550.

【3】Nishitani T, Konishi T, Itoh K. Optical coding scheme using optical interconnection for high sampling rate and high resolution photonic analog-to-digital conversion[J]. Optics Express, 2007, 15(24): 15812-15817.

【4】Ng W, Stephens R, Persechini D, et al. Ultra-low jitter modelocking of Er-fibre laser at 10 GHz and its application in photonic sampling for analogue-to-digital conversion[J]. Electronics Letters, 2001, 37(2): 113-115.

【5】Bhushan A S, Coppinger F, Jalali B, et al. 150 Gsample/s wavelength division sampler with time-stretched output[J]. Electronics Letters, 1998, 34(5): 474-475.

【6】Ho P P, Wang Q Z, Chen J, et al. Ultrafast optical pulse digitization with unary spectrally encoded cross-phase modulation[J]. Applied Optics, 1997, 36(15): 3425-3429.

【7】Konishi T, Tanimura K, Asano K, et al. All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique[J]. Journal of the Optical Society of America B, 2002, 19(11): 2817-2823.

【8】Xu C, Liu X. Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters[J]. Optics Letters, 2003, 28(12): 986-988.

【9】Stigwall J, Galt S. Interferometric analog-to-digital conversion scheme[J]. IEEE Photonics Technology Letters, 2005, 17(2): 468-470.

【10】Ikeda K, Abdul J, Namiki S, et al. Optical quantizing and coding for ultrafast A/D conversion using nonlinear fiber-optic switches based on Sagnac interferometer[J]. Optics Express, 2005, 13(11): 4296-4302.

【11】Shen R G, Li B Z, Ruan L Z, et al. Integrated optic Mach-Zehnder analog-to-digital converter[J]. Acta Optica Sinica, 1992, 12(7): 652-656.
沈荣桂, 李宝贞, 阮丽真, 等. 集成光学Mach-Zehnder型模数转换器[J]. 光学学报, 1992, 12(7): 652-656.

【12】Wang Y, Zhang H M, Wu Q W, et al. Improvement of photonic ADC based on phase-shifted optical quantization by using additional modulators[J]. IEEE Photonics Technology Letters, 2012, 24(7): 566-568.

【13】Wu Q W, Zhang H M, Peng Y, et al. 40 GS/s Optical analog-to-digital conversion system and its improvement[J]. Optics Express, 2009, 17(11): 9252-9257.

【14】Zhang Z Y, Li H P, Zhang S J, et al. Analog-to-digital converters using photonic technology[J]. Chinese Science Bulletin, 2014, 59(22): 2666-2671.

【15】Kang Z, Yuan J H, Zhang X T, et al. On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide[J]. Scientific Reports, 2016, 6: 19528.

【16】Li P, Yi X G, Liu X L, et al. All-optical analog comparator[J]. Scientific Reports, 2016, 6: 31903.

【17】Li P, Sang L X, Zhao D L, et al. All-optical comparator with a step-like transfer function[J]. Journal of Lightwave Technology, 2017, 35(23): 5034-5040.

【18】Wu X L, Li H P, Liao J K, et al. Analysis of quantization techniques in all-optical analog-to-digital conversion[J]. Laser & Infrared, 2009, 39(10): 1034-1039.
吴显理, 李和平, 廖进昆, 等. 全光模数转换中的量化技术分析[J]. 激光与红外, 2009, 39(10): 1034-1039.

【19】Zhang T H, Qiu Q, Su J, et al. Optical analog-to-digital conversion technology and its recent progress[J]. Laser & Optoelectronics Progress, 2016, 53(12): 120003.
张天航, 邱琪, 苏君, 等. 光模数转换技术及其研究进展[J]. 激光与光电子学进展, 2016, 53(12): 120003.

【20】Oda S, Maruta A. A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion[J]. IEEE Photonics Technology Letters, 2005, 17(2): 465-467.

【21】Oda S, Maruta A. Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(2): 307-314.

【22】Kang S, Yuan J H, Kang Z, et al. All-optical quantization scheme by slicing the supercontinuum in a chalcogenide horizontal slot waveguide[J]. Journal of Optics, 2015, 17(8): 085502.

【23】Zhang Y L, Mei C, Zhang X T, et al. All-optical quantization by slicing supercontinuum in a Ge11.5As24Se64.5 rib waveguide[J]. Proceedings of SPIE, 2016, 10019: 100191A.

【24】Liu C. Optical fiber based long-pulse pumped supercontinuum laser source and its stability research[D]. Beijing: Beijing Jiaotong University, 2012: 12-45.
刘楚. 长脉冲泵浦光纤超连续谱光源及其稳定性研究[D]. 北京: 北京交通大学, 2012: 12-45.

【25】Agrawal G P. Nonlinear fiber optics[M]. Jia D F, Ge C F, Wang Z Y, et al., Transl. 5th ed. Beijing: Publishing House of Electronics Industry, 2014: 388-394.
阿戈沃. 非线性光纤光学[M]. 贾东方, 葛春风, 王肇颖, 等, 译. 5版. 北京: 电子工业出版社, 2014: 388-394.

引用该论文

Guo Ya,Li Pu,Guo Yanqiang,Guo Yuanyuan,Guo Xiaomin,Liu Xianglian,Liu Yiming,Wang Yuncai. Real-Time and High-Speed All-Optical Quantization by Slicing Supercontinuum Spectrum[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100701

郭亚,李璞,郭龑强,郭园园,郭晓敏,刘香莲,刘义铭,王云才. 切割超连续谱实现实时、高速全光量化[J]. 激光与光电子学进展, 2018, 55(10): 100701

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF