首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:100603--1)

基于布里渊增益-损耗谱的高精度分布式传感器

A Highly Accurate Distributed Sensor Based on the Brillouin Gain-Loss Spectrum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种基于布里渊增益和损耗相互作用的光时域分析系统, 该系统将连续光与反向的斯托克斯和反斯托克斯脉冲同时输入光纤, 通过声光相互作用在布里渊增益谱中心频率处产生一个窄线宽的吸收峰。该吸收峰的线宽约为布里渊增益谱宽的1/5,并且其频率与布里渊频移相关。因此利用该窄线宽吸收峰可以提高布里渊传感器的频率分辨率, 从而实现高精度的温度和应变测量。实验结果表明, 与传统的基于布里渊增益谱的传感器相比, 该方案的温度测量精度提高了1倍多。

Abstract

An optical time domain analysis system that is based on the interaction between the Brillouin gain and loss is proposed. A continuous wave propagates with reverse pulses at its Stokes and anti-Stokes frequencies in an optical fiber. Further, a narrow linewidth absorption peak is observed at the center frequency of the Brillouin gain spectrum. The linewidth of the absorption peak is approximately 1/5 of that observed in the Brillouin gain spectrum, and the frequency of the absorption peak is related to the Brillouin frequency shift. Therefore, the frequency resolution of a Brillouin sensor can be improved by the narrow linewidth absorption peak; thus, highly accurate temperature or strain measurements can be achieved. The experimental result depicts that the accuracy of the temperature measured by this scheme is more than doubled, compared with the traditional Brillouin gain spectrum based sensor.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP212.1

DOI:10.3788/lop55.100603

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61307100, 61675091)

收稿日期:2018-03-30

修改稿日期:2018-04-26

网络出版日期:2018-05-09

作者单位    点击查看

仲晓轩:暨南大学光子技术研究院, 广东 广州 510632
梁浩:暨南大学光子技术研究院, 广东 广州 510632
程凌浩:暨南大学光子技术研究院, 广东 广州 510632
李杰:暨南大学光子技术研究院, 广东 广州 510632

联系人作者:梁浩(lianghao1509@gmail.com); 仲晓轩(zhongxiaoxuan@outlook.com);

【1】Cao Y L, Ye Q, Cai H W. On-line temperature monitoring in railway existing fiber cable based on brillouin optical time-domain reflectometry[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080612.
曹玉龙, 叶青, 蔡海文. 基于布里渊光时域反射计的铁路既有光缆在线温度监测[J]. 激光与光电子学进展, 2016, 53(8): 080612.

【2】Li Y Q, Zhang L X, Li X J, et al. Performance improvement method of Rayleigh Brillouin optical time domain analysis system[J]. Acta Optica Sinica, 2017, 37(1): 0106001.
李永倩, 张立欣, 李晓娟, 等. 瑞利布里渊光时域分析系统传感性能的提升方法[J]. 光学学报, 2017, 37(1): 0106001.

【3】Zhang X P, Wang F, Lu Y G. Fully distributed optical fiber sensor based onBrillouin effect[J]. Laser & Optoelectronics Progress, 2009, 46(11): 14-20.
张旭苹, 王峰, 路元刚. 基于布里渊效应的连续分布式光纤传感技术[J]. 激光与光电子学进展, 2009, 46(11): 14-20.

【4】Zhang L X, Li Y Q, An Q, et al. Temperature sensing technology based on Rayleigh Brillouin optical time domain analysis with pulse coding[J]. Acta Optica Sinica, 2017, 37(11): 1106004.
张立欣, 李永倩, 安琪, 等. 脉冲编码瑞利布里渊光时域分析温度传感技术[J]. 光学学报, 2017, 37(11): 1106004.

【5】Niklès M, Thévenaz L, Robert P A. Simple distributed fiber sensor based on Brillouin gain spectrum analysis[J]. Optics Letters, 1996, 21(10): 758-760.

【6】Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. Journal of Lightwave Technology, 1997, 15(10): 1842-1851.

【7】Bao X Y, DeMerchant M, Brown A, et al. Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor[J]. Journal of Lightwave Technology, 2001, 19(11): 1698-1704.

【8】Zou L F, Bao X Y, Afshar V S, et al. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber[J]. Optics Letters, 2004, 29(13): 1485-1487.

【9】Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of Lightwave Technology, 1995, 13(7): 1296-1302.

【10】Parker T R, Farhadiroushan M, Feced R, et al. Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers[J]. IEEE Journal of Quantum Electronics, 1998, 34(4): 645-659.

【11】Zou W W, He Z Y, Hotate K. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber[J]. Optics Express, 2009, 17(3): 1248-1255.

【12】Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.

【13】Mizuno Y, Zou W W, He Z Y, et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)[J]. Optics Express, 2008, 16(16): 12148-12153.

【14】Naruse H, Tateda M. Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber[J]. Applied Optics, 1999, 38(31): 6516-6521.

【15】Gaeta A L, Boyd R W. Stochastic dynamics of stimulated Brillouin scattering in an optical fiber[J]. Physical Review A, 1991, 44(5): 3205-3209.

【16】Takushima Y, Kikuchi K. Spectral gain hole burning and modulation instability in a Brillouin fiber amplifier[J]. Optics Letters, 1995, 20(1): 34-36.

【17】Li Y, Bao X Y, Dong Y K, et al. A novel distributed Brillouin sensor based on optical differential parametric amplification[J]. Journal of Lightwave Technology, 2010, 28(18): 2621-2626.

【18】Boyd R W. Nonlinear optics[M]. Salt Lake City: Academic Press, 2003.

【19】Li W, Bao X, Li Y, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 2008, 16(26): 21616-21625.

【20】Boyd R W, Rzaewski K, Narum P. Noise initiation of stimulated Brillouin scattering[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(9): 5514-5521.

引用该论文

Zhong Xiaoxuan,Liang Hao,Cheng Linghao,Li Jie. A Highly Accurate Distributed Sensor Based on the Brillouin Gain-Loss Spectrum[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100603

仲晓轩,梁浩,程凌浩,李杰. 基于布里渊增益-损耗谱的高精度分布式传感器[J]. 激光与光电子学进展, 2018, 55(10): 100603

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF