Photonics Research, 2018, 6 (11): 11000987, Published Online: Oct. 11, 2018  

Broadband athermal waveguides and resonators for datacom and telecom applications Download: 536次

Author Affiliations
1 Key Laboratory of Opto-electronic Information Technical Science of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
2 Key Laboratory of Integrated Opto-electronic Technologies and Devices in Tianjin, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
3 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4 Department of Materials Engineering, University of Tokyo, Tokyo 113-8656, Japan
5 College of Optics and Photonics, CREOL and FPCE, University of Central Florida, Orlando, Florida 32816, USA
Abstract
The high-temperature sensitivity of the silicon material index limits the applications of silicon-based micro-ring resonators in integrated photonics. To realize a low but broadband temperature-dependent-wavelength-shift microring resonator, designing a broadband athermal waveguide becomes a significant task. In this work, we propose a broadband athermal waveguide that shows a low effective thermo-optical coefficient of ±1×10 6/K from 1400 to 1700 nm. The proposed waveguide shows a low-loss performance and stable broadband athermal property when it is applied to ring resonators, and the bending loss of ring resonators with a radius of >30 μm is 0.02 dB/cm.

Liuqing He, Yuhao Guo, Zhaohong Han, Kazumi Wada, Jurgen Michel, Anuradha M. Agarwal, Lionel C. Kimerling, Guifang Li, Lin Zhang. Broadband athermal waveguides and resonators for datacom and telecom applications[J]. Photonics Research, 2018, 6(11): 11000987.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!