首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1202010--1)


Selective Laser Melting of TiB2-Reinforced S136 Die Steels

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


利用激光选区熔化(SLM)工艺成形TiB2/S136复合材料,研究了激光体能量密度η对SLM成形试样致密度、微观组织及力学性能的影响。采用X射线衍射仪、场发射扫描电镜、透射电镜等研究成形试样物相成分、表面形貌及微观组织。结果表明:当η过低时,粉末熔化不完全,形成大量残余孔隙;而当η过高时,受热应力影响,成形试样存在微裂纹。当η=66.7 J/mm3时,成形试样表面缺陷少,致密度高达97.3%,存在细化的、分布均匀的等轴晶,其平均显微硬度高达742.4 HV0.1,平均摩擦系数和磨损率分别为0.5593和0.272×10-4 mm3·N-1·m-1,耐磨性能优异,抗拉强度达到1051.3 MPa,延伸率为5.84%,塑性较好。因此,SLM成形TiB2/S136复合材料的最佳η为66.7 J/mm3,η过高或过低,均会严重影响TiB2/S136复合材料的致密度及力学性能,该研究为SLM成形高性能模具钢材料提供了有益的理论和工艺借鉴。


The selective laser melting (SLM) technology is used to process the TiB2/S136 composites and the effect of laser energy density η on the densities, microstructures and mechanical properties of SLM-processed specimens is investigated. X-ray diffraction instrument, field emission scanning electron microscopy and transmission electron microscopy are used to study the phase compositions, surface morphologies and microstructures of specimens. The results show that, when η is low, the powders are not fully molten and thus a large amount of residual pores are formed. However, when η is too high, the micro-cracks are formed in the specimens because of thermal stress. When η is 66.7 J/mm3, the specimens have less surface defects, their densities are up to 97.3%, and there exist fine and uniformly-distributed equiaxed grains. As for these specimens, the average micro-hardness is up to 742.4 HV0.1, and the average friction coefficient and wear rate are 0.5593 and 0.272×10-4 mm3·N-1·m-1, respectively, indicating an excellent abrasion resistance performance. The tensile strength is 1051.3 MPa and the elongation is 5.84%, indicating a relatively good plasticity. Above all, the optimal η for the SLM-processed TiB2/S136 composites is 66.7 J/mm3, and if η is too high or too low, the densities and mechanical properties of TiB2/S136 composites would be seriously affected. This study provides a useful theoretical basis and a process guidance for SLM-processed high-performance die steels.









作者单位    点击查看

胡辉:华中科技大学材料成形与模具技术国家重点实验室, 湖北 武汉 430074
周燕:华中科技大学材料成形与模具技术国家重点实验室, 湖北 武汉 430074中国地质大学(武汉)工程学院, 湖北 武汉 430074
文世峰:华中科技大学材料成形与模具技术国家重点实验室, 湖北 武汉 430074
魏青松:华中科技大学材料成形与模具技术国家重点实验室, 湖北 武汉 430074


【1】赵晓, 魏青松, 刘颖, 等. 激光选区熔化技术成形S136模具钢研究[C]∥第15届全国特种加工学术会议: 第15届全国特种加工学术会议论文集, 2013: 295-299.

【2】Yadroitsev I, Gusarov A, Yadroitsava I, et al. Single track formation in selective laser melting of metal powders[J]. Journal of Materials Processing Technology, 2010, 210(12): 1624-1631.

【3】Kruth J P, Froyen L, van Vaerenbergh J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/2/3): 616-622.

【4】Huang W D, Lin X. Research progress in laser solid forming of high performance metallic component[J]. Materials China, 2010, 29(6): 12-27.
黄卫东, 林鑫. 激光立体成形高性能金属零件研究进展[J]. 中国材料进展, 2010, 29(6): 12-27.

【5】Wang H M. Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5): 473-478.
王华明. 金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J]. 航空学报, 2002, 23(5): 473-478.

【6】Zhang T B, Hu R, Zhong H, et al. Microstructure of directionally solidified Gd5Si4 by laser zone remelting[J]. Rare Metal Materials and Engineering, 2012, 41(10): 1837-1841.
张铁邦, 胡锐, 钟宏, 等. 激光区熔定向凝固Gd5Si4合金的显微组织特征[J]. 稀有金属材料与工程, 2012, 41(10): 1837-1841.

【7】Chen J, Zhao X M, Yang H O, et al. Study on mechanical properties of superalloy by laser rapid forming[J]. Rare Metal Materials and Engineering, 2008, 37(9): 1664-1668.
陈静, 赵晓明, 杨海欧, 等. 激光快速成形粉末高温合金的力学性能研究[J]. 稀有金属材料与工程, 2008, 37(9): 1664-1668.

【8】AlMangour B, Grzesiak D, Yang J M. Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting[J]. Materials & Design, 2016, 96: 150-161.

【9】AlMangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment[J]. Journal of Materials Processing Technology, 2017, 244: 344-353.

【10】Wen S F, Wu X L, Zhou Y, et al. Microstructure and property of S136 mould steel fabricated by selective laser melting[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2018, 46(2): 51-55.
文世峰, 吴雪良, 周燕, 等. 激光选区熔化成形S136模具钢的成形性能研究[J]. 华中科技大学学报 (自然科学版), 2018, 46(2): 51-55.

【11】Zhang G Q, Gu D D. Selective laser melting of TiC solid solution strengthened tungsten matrix composites[J]. Rare Metal Materials and Engineering, 2015, 44(4): 1017-1023.
张国全, 顾冬冬. 选区激光熔化成形TiC固溶增强钨基复合材料研究[J]. 稀有金属材料与工程, 2015, 44(4): 1017-1023.

【12】Enneti R K, Morgan R, Atre S V. Effect of process parameters on the selective laser melting (SLM) of tungsten[J]. International Journal of Refractory Metals and Hard Materials, 2018, 71: 315-319.

【13】Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel[J]. Journal of Materials Processing Technology, 2017, 249: 255-263.

【14】Gu D D, Hagedorn Y C, Meiners W, et al. Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior[J]. Composites Science and Technology, 2011, 71(13): 1612-1620.

【15】赵晓. 激光选区熔化成形模具钢材料的组织与性能演变基础研究[D]. 武汉: 华中科技大学, 2016.

【16】Li R D, Liu J H, Shi Y S, et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(9/10/11/12): 1025-1035.

【17】Qiu C L, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia, 2015, 96: 72-79.

【18】Iida T, Guthrie R I L. The physical properties of liquid metals[M]. Oxford: Clarendon Press, 1993: 255-265.

【19】Zhou S F, Zeng X Y, Hu Q W, et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization[J]. Applied Surface Science, 2008, 255(5): 1646-1653.

【20】Kadolkar P B, Watkins T R, de Hosson J T M, et al. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys[J]. Acta Materialia, 2007, 55(4): 1203-1214.

【21】Sulima I, Klimczyk P, Malczewski P. Effect of TiB2 particles on the tribological properties of stainless steel matrix composites[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 12-18.

【22】Li H, Wang M, Zhou P X, et al. Effects of surface topography and wettability on surface heterogeneous nucleation[J]. Foundry Technology, 2012, 33(6): 641-644.
李辉, 王猛, 周鹏翔, 等. 基底形貌及润湿性对表面异质形核的影响[J]. 铸造技术, 2012, 33(6): 641-644.

【23】Xu S C, Zhou L X, Zhang Z C, et al. Effect of heat treatment on austenite grain size of SAE4320 steel[J]. Heat Treatment of Metals, 2014, 39(11): 111-113.
徐尚呈, 周立新, 张志成, 等. 热处理工艺对SAE4320钢奥氏体晶粒度的影响[J]. 金属热处理, 2014, 39(11): 111-113.

【24】Gu D D, Wang H Q, Dai D H, et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting[J]. Scripta Materialia, 2015, 96: 25-28.

【25】Niu H J, Chang I T H. Selective laser sintering of gas and water atomized high speed steel powders[J]. Scripta Materialia, 1999, 41(1): 25-30.

【26】Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.

【27】Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 616: 1-11.

【28】Wang S, Cheng X, Tian X J, et al. Effect of TiC addition on microstructures and properties of MC carbide reinforced Inconel625 composites by laser additive manufacturing[J]. Chinese Journal of Lasers, 2018, 45(6): 0602002.
王舒, 程序, 田象军, 等. TiC添加量对激光增材制造MC碳化物增强Inconel625复合材料组织及性能的影响[J]. 中国激光, 2018, 45(6): 0602002.

【29】Wen S F, Hu H, Zhou Y, et al. Enhanced hardness and wear property of S136 mould steel with nano-TiB2 composites fabricated by selective laser melting method[J]. Applied Surface Science, 2018, 457: 11-20.


Hu Hui,Zhou Yan,Wen Shifeng,Wei Qingsong. Selective Laser Melting of TiB2-Reinforced S136 Die Steels[J]. Chinese Journal of Lasers, 2018, 45(12): 1202010

胡辉,周燕,文世峰,魏青松. 激光选区熔化成形TiB2增强S136模具钢[J]. 中国激光, 2018, 45(12): 1202010


【1】田健,魏青松,朱文志,党明珠,文世峰. Cu-Al-Ni-Ti合金激光选区成形工艺及其力学性能. 中国激光, 2019, 46(3): 302001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF