首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1206001--1)

一种大模场沟槽辅助型扇形瓣状光纤的研究

Trench-Assisted Fan-Segmented Cladding Fiber with Large Mode Area

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种抗弯曲大模场面积单模光纤方案——沟槽辅助型瓣状光纤。纤芯中间加入了低折射率辅助沟槽,纤芯四周围绕高折射率扇形瓣。利用COMSOL软件计算模式损耗、模场面积等性能。研究表明: 在弯曲半径为15 cm的情况下,光纤模场面积可达700 μm2,高阶模和基模损耗比大于100,能够实现有效单模操作。此外,当弯曲方向在[-180°,180°]范围内变化时,光纤性能保持稳定。这种光纤在紧凑型高功率光纤激光器和放大器领域显示出巨大的潜力。

Abstract

This study proposes a novel large mode area fiber structure with bend-resistant and single-mode operation, known as trench-assisted segmented cladding fiber. In this structure, a low refractive index (RI) trench is added to the fiber core and the core is surrounded periodically with high RI fan-segmented claddings. COMSOL software is used to calculate the mode leakage loss and mode area. Numerical analysis indicates that when the indicates bending radius of the fiber is 15 cm, the mode field area of the fiber can achieve 700 μm2. Meanwhile, the loss ratio between the high-order mode (HOM) and fundamental mode (FM) is >100, which ensures effective single-mode operation. In addition, the fiber performance is stable within the bending orientation from -180° to 180°. Based on the results of this study, the proposed fiber has the potential to play an important role in developing high-power fiber lasers and amplifiers.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.1

DOI:10.3788/cjl201845.1206001

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61471033,61525501)、山东省高等学校科技计划项目(J17KA089)

收稿日期:2018-05-31

修改稿日期:2018-07-20

网络出版日期:2018-07-27

作者单位    点击查看

刘诗男:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044
宁提纲:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044
马绍朔:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044
郑晶晶:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044
许建:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044
温晓东:曲阜师范大学物理工程学院, 山东 曲阜 273165

联系人作者:宁提纲(tgning@bjtu.edu.cn)

【1】Lou Q H, Zhu J Q, Zhou J, et al. Double cladding fiber laser and it''s application in military[J]. Journal of Institute of Command & Technology, 2003, 14(5): 28-32.
楼祺洪, 朱健强, 周军, 等. 双包层光纤激光器及其在军事中的应用[J]. 装备指挥技术学院学报, 2003, 14(5): 28-32.

【2】Fang Z H, Hui X F. The development of Yb-doped double-clad fiber laser and its application[J]. Laser Technology, 2006, 30(4): 438-444.

【3】Zhang D P, Hu M L, Xie C, et al. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking[J]. Acta Physica Sinica, 2012, 61(4): 044206.
张大鹏, 胡明列, 谢辰, 等. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器[J]. 物理学报, 2012, 61(4): 044206.

【4】Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1 kW of continuous-wave output power[J]. Electronics Letters, 2004, 40(8): 470-471.

【5】Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW of continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092.

【6】Li W, Wu Z C, Chen X, et al. High power fiber laser output power breakthrough 1 kW[J]. High Power Laser and Particle Beams, 2006, 18(6): 890.
李伟, 武子淳, 陈曦, 等. 大功率光纤激光器输出功率突破1 kW[J]. 强激光与粒子束, 2006, 18(6): 890.

【7】Sun Y H, Ke W W, Feng Y J, et al. 1030 nm kilowatt-level ytterbium-doped narrow linewidth fiber amplifier[J]. Chinese Journal of Lasers, 2016, 43(6): 0601003.
孙殷宏, 柯伟伟, 冯昱骏, 等. 1030 nm千瓦级掺镱光纤窄线宽激光放大器[J]. 中国激光, 2016, 43(6): 0601003.

【8】Chen D R, Yang T J, Wu J J, et al. Band-rejection fiber filter and fiber sensor based on a Bragg fiber of transversal resonant structure[J]. Optics Express, 2008, 16(21): 16489-16495.

【9】Horikis T P, Kath W L. Modal analysis of circular Bragg fibers with arbitrary index profiles[J]. Optics Letters, 2006, 31(23): 3417-3419.

【10】Liu M N, Li M X, Jiang C Y, et al. Research progress on high birefringence terahertz photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090006.
刘梦楠, 李梦雪, 姜澄溢, 等. 高双折射太赫兹光子晶体光纤的研究进展[J]. 激光与光电子学进展, 2017, 54(9): 090006.

【11】Zhang F, Zhang H K, Chen T, et al. Nd-doped double-clad large-mode-area polarization-maintaining photonic crystal fiber laser[J]. Chinese Journal of Lasers, 2017, 44(2): 0201020.
张峰, 张海鹍, 陈涛, 等. 掺钕双包层大模场保偏光子晶体光纤激光器[J]. 中国激光, 2017, 44(2): 0201020.

【12】Duan J, Teng C, Han K, et al. Fabrication of segmented cladding fiber by bicomponent spinning [J]. Polymer Engineering & Science, 2009, 49(9): 1865-1870.

【13】Takenaga K, Arakawa Y, Sasaki Y, et al. A large effective area multi-core fiber with an optimized cladding thickness[J]. Optics Express, 2011, 19(26): B543-B550.

【14】Rastogi V, Chiang K S. Propagation characteristics of a segmented cladding fiber[J]. Optics Letters, 2001, 26(8): 491-493.

【15】Ma S S, Ning T G, Li J, et al. Detailed study of bending effects in large mode area segmented cladding fibers[J]. Applied Optics, 2016, 55(35): 9954-9960.

【16】Hooda B, Pal A, Rastogi V, et al. Segmented cladding fiber fabricated in silica-based glass[J]. Optical Engineering, 2015, 54(7): 075103.

【17】Yeung A, Chu P L, Gang D P, et al. Design and fabrication of polymer cross fiber for large-core single-mode operation[J]. Journal of Lightwave Technology, 2009, 27(2): 101-107.

【18】Ma S S, Ning T G, Pei L, et al. Bend-resistant large mode area fiber with novel segmented cladding[J]. Optics & Laser Technology, 2018, 98: 113-120.

【19】Cheng G X. The basic of light-wave technology[M]. Beijing: Chinese Railway Press, 2000: 239-243.
陈根祥. 光波技术基础[M]. 北京: 中国铁道出版社, 2000: 239-243.

【20】Song N, Yin Z M, Ge W P. Theoretical calculation of the propagation characters of optical fibers[J]. Acta Photonica Sinica, 2002, 31(5): 566-569.
宋宁, 殷宗敏, 葛文萍. 光纤传输特性的理论计算[J]. 光子学报, 2002, 31(5): 566-569.

【21】Jiang H, Zhang J. Analysis on bending loss of single-mode fiber[J]. Communications Technology, 2010, 43(4): 67-69.
江华, 张静. 单模光纤的弯曲损耗分析[J]. 通信技术, 2010, 43(4): 67-69.

引用该论文

Liu Shinan,Ning Tigang,Ma Shaoshuo,Zheng Jingjing,Xu Jian,Wen Xiaodong. Trench-Assisted Fan-Segmented Cladding Fiber with Large Mode Area[J]. Chinese Journal of Lasers, 2018, 45(12): 1206001

刘诗男,宁提纲,马绍朔,郑晶晶,许建,温晓东. 一种大模场沟槽辅助型扇形瓣状光纤的研究[J]. 中国激光, 2018, 45(12): 1206001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF