首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1202008--1)

医用不锈钢激光合金化铜钴合金的组织及其生物医学性能

Microstructure and Biomedical Properties of Laser Alloyed Cu-Co Alloys on Medical Stainless Steel

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在医用不锈钢中加入适量的过饱和铜离子后形成的含铜不锈钢,具有较好的生物功能。用激光合金化方法代替传统的热处理合金化方法,在不锈钢的表面形成铜钴合金层,探索一种以上的合金元素同时存在于合金层中的可能性。采用扫描电子显微镜、X射线衍射仪分析了合金层显微组织的结构特征。通过大肠杆菌实验验证了合金层的杀菌功能,通过盐水腐蚀实验分析了合金层的抗腐蚀能力。结果表明:当激光功率为600 W、扫描速度为400 mm/s、预置厚度为500 μm、搭接率为35%时,用铜钴质量百分比为1∶1的混合粉末制成的合金具有稳定的表面金相组织,其杀菌能力以及耐腐蚀性能较好,且合金层的硬度较基体高约20%。激光合金化方法可以代替传统合金化方法进行生物功能化医用金属的制备。

Abstract

The copper-containing stainless steels formed by adding a suitable amount of supersaturated copper ions in medical stainless steels have a nice biological function. The laser alloying method instead of the traditional heat treatment alloying method is adopted to form a Cu-Co alloyed layer on the stainless steel surface in order to explore the possibility of more than one alloying element simultaneously existing in the alloyed layer. Scanning electron microscopy and X-ray diffractometer are used to analyze the structural characteristics of the microstructures of the alloyed layer. The antibacterial function of this alloyed layer is verified via the E. coli experiment and the brine corrosion test is used to analyze the corrosion resistance property of this alloyed layer. The results show that the fabricated alloy has a stable surface metallography and good antibacterial ability and corrosion resistance when the laser power is 600 W, the scanning speed is 400 mm/s, the preset thickness is 500 μm, the overlap ratio is 35%, and the mass ratio of Cu to Co in the mixed powder is 1∶1. In addition, the hardness of the alloyed layer is higher by 20% than that of the base. It is proved that the laser alloying method is able to replace the traditional alloying method for the preparation of bio-functionalized medical metals.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249;TG156.99

DOI:10.3788/cjl201845.1202008

所属栏目:激光制造

基金项目:装备预研教育部联合基金(6141A02033103)、江苏省“六大人才高峰”高层次人才项目(2016-HKHT-001)、军委科技委前沿科技创新项目(1716313ZT01001801)

收稿日期:2018-06-06

修改稿日期:2018-07-04

网络出版日期:2018-08-23

作者单位    点击查看

孙桂芳:东南大学机械工程学院, 江苏 南京 211189
陶丰:东南大学机械工程学院, 江苏 南京 211189
姜波:东南大学机械工程学院, 江苏 南京 211189
姬文宣:东南大学机械工程学院, 江苏 南京 211189
牛牧遥:东南大学机械工程学院, 江苏 南京 211189
沈旭婷:东南大学机械工程学院, 江苏 南京 211189

联系人作者:孙桂芳(gfsun@seu.edu.cn)

【1】Yao R B, Zhang J G. Basic research on cladding ceramic particles on laser surface of titanium alloy[C]. National Phase Change Association, 2003: 534-537.
姚瑞波, 章靖国. 钛合金激光表面熔覆陶瓷颗粒的实验研究[C]. 全国相变学术会, 2003: 534-537.

【2】Ren L, Yang C G, Yang K. Research and development of antibacterial medical metal material[J]. China Medical Devices, 2017, 32(1): 1-6, 13.
任玲, 杨春光, 杨柯. 抗菌医用金属材料的研究与发展[J]. 中国医疗设备, 2017, 32(1): 1-6, 13.

【3】Yang K, Ren L, Zhang Y, et al. Study on novel metallic biomaterials with antibacterial functions[J]. Materials China, 2012, 31(9): 20-26.
杨柯, 任玲, 张余, 等. 新型抗菌功能医用金属研究[J]. 中国材料进展, 2012, 31(9): 20-26.

【4】Li G J, Xu C Q, Meng D, et al. Research progress on laser surface alloying[J]. Foundry Technology, 2008, 29(8): 1136-1139.
李贵江, 许长庆, 孟丹, 等. 材料表面激光合金化研究进展[J]. 铸造技术, 2008, 29(8): 1136-1139.

【5】Ju Y, Guo S Y, Li Z Q. Status and development of laser surface alloying and laser cladding in China[J]. Materials Science and Engineering, 2002, 20(1): 143-145, 71.
居毅, 郭绍义, 李宗全. 金属表面激光合金化及熔覆处理的研究进展[J]. 材料科学与工程, 2002, 20(1): 143-145, 71.

【6】Li P, Sun G F, Zhang W, et al. Microstructure and properties of laser alloyed Mn-Al2O3 layer on stainless steel[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(8): 2253-2259.
李鹏, 孙桂芳, 张尉, 等. 不锈钢表面激光合金化Mn-Al2O3强化层的组织及性能[J]. 中国有色金属学报, 2012, 22(8): 2253-2259.

【7】Zhang S, Wu C L, Yi J Z, et al. Study on microstructure and performance of a FexCoCrAlCu/Q235 laser alloying coatings[J]. Chinese Journal of Lasers, 2014, 41(8): 0803006.
张松, 吴臣亮, 伊俊振, 等. FexCoCrAlCu/Q235激光合金化层组织及性能研究[J]. 中国激光, 2014, 41(8): 0803006.

【8】Li D, Qian M, Jin C, et al. Laser alloying of magnesium alloy AZ91D with Al-Si powder and its corrosion performance[J]. Chinese Journal of Lasers, 2008, 35(9): 1395-1400.
李达, 钱鸣, 金昌, 等. AZ91D镁合金Al-Si粉末激光合金化及腐蚀性能[J]. 中国激光, 2008, 35(9): 1395-1400.

【9】Tang C H, Cheng F T, Man H C. Laser surface alloying of a marine propeller bronze using aluminium powder. Part II: corrosion and erosion-corrosion synergism[J]. Surface and Coatings Technology, 2006, 200(8): 2594-2601.

【10】Sun G F, Zhou R, Li P, et al. Laser surface alloying of C-B-W-Cr powders on nodular cast iron rolls[J]. Surface and Coatings Technology, 2011, 205(8/9): 2747-2754.

【11】Yao J H, Wang L, Zhang Q L, et al. Surface laser alloying of 17-4PH stainless steel steam turbine blades[J]. Optics & Laser Technology, 2008, 40(6): 838-843.

【12】Gai W T, Zhu L Q, Zhu F H, et al. Effect of nano-copper oxide on pathogenicity of mice inoculated with E. coli by gavage[J]. Veterinary Technology, 2009(3): 74-75.
盖文婷, 朱连勤, 朱风华, 等. 纳米氧化铜对小白鼠灌胃接种大肠杆菌致病性的影响[J]. 黑龙江畜牧兽医, 2009(3): 74-75.

【13】Yu P, An Z W, Ren Z S, et al. Experimental observation on synergetic efficacy of available chlorine and copper ion in killing Escherichia coli[J]. Chinese Journal of Disinfection, 2002, 19(3): 185-186.
于萍, 安子蔚, 任志盛, 等. 有效氯与铜离子协同杀灭大肠杆菌效果的试验观察[J]. 中国消毒学杂志, 2002, 19(3): 185-186.

【14】Guo T, Xu Z R. Studies on antibacterial mechanism of cupric ions in Escherichia coli K88[J]. Chinese Journal of Preventive Veterinary Medicine, 2004 , 26(2): 127-130.
郭彤, 许梓荣. 铜离子对引起仔猪腹泻的大肠杆菌K88杀菌机理的研究[J]. 中国预防兽医学报, 2004, 26(2): 127-130.

【15】Dong X J, Zhang F, Xu X Y. Toxic study of heavy metals on E. coli[J]. Journal of Hangzhou Teachers′ College, 2000, 22(3): 60-62.
董新姣, 张锋, 徐向勇. 重金属对大肠杆菌的毒性研究[J]. 杭州师范学院学报, 2000, 22(3): 60-62.

【16】Guo S G. Bioactivity and antibacterial property of porous copper-incorporated TiO2 coating prepared by micro-arc oxidation[D]. Soochow: Soochow University, 2015.
郭曙光. 人工关节假体表面采用微弧氧化掺铜二氧化钛纳米涂层的抗菌性能与促成骨细胞生物活性的实验研究[D]. 苏州: 苏州大学, 2015.

【17】Ziche M, Jones J, Gullino P M. Role of prostaglandin E1 and copper in angiogenesis[J]. Journal of the National Cancer Institute, 1982, 69(2): 475-482.

【18】Wang Y S, Zhou P, Qin J Q, et al. Polymer materials for complexing copper ions and their anti-tumor use, China Patent, CN201710333619. 8, 2017-07-14.
王银松, 周平, 秦佳琪, 等. 用于络合铜离子的高分子材料及其抗肿瘤用途: CN201710333619.8[P]. 2017-07-14.

【19】Luo K, Fan Z X, Feng Z, et al. Effect of copper-ion on proliferation and differentiation of vascular endothelial cells[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2009, 23(7): 832-835.
罗堃, 范兆心, 冯喆, 等. 铜离子对血管内皮细胞增殖与分化的影响[J]. 中国修复重建外科杂志, 2009, 23(7): 832-835.

【20】Sen C K, Khanna S, Venojarvi M, et al. Copper-induced vascular endothelial growth factor expression and wound healing[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2002, 282(5): H1821-H1827.

【21】Feng W K, Ye F, Xue W L, et al. Copper regulation of hypoxia-inducible factor-1 activity[J]. Molecular Pharmacology, 2009, 75(1): 174-182.

【22】Yuan X J, Shu M R, Li G, et al. Effects of cobalt and chromium ions on the proliferation of osteoblast and the expression of collagen-I[J]. Experimental and Laboratory Medicine, 2016, 34(2): 158-160.
袁晓军, 舒敏锐. 金属钴、铬离子对成骨细胞增殖及I型胶原蛋白表达功能的影响[J]. 实验与检验医学, 2016, 34(2): 158-160.

【23】Lai Y B, Zhang B H, Zhao J B. The optimum lap rate calculation and experimental verification of direct metal laser forming[J]. Transactions of the China Welding Institution, 2016, 37(12): 79-84.
来佑彬, 张本华, 赵吉宾, 等. 金属激光直接成形最佳搭接率计算及试验验证[J]. 焊接学报, 2016, 37(12): 79-84.

【24】Shitaji M. Diffusion and viscous liquid metal[J]. Bulletin of the Japan Institute of Metals, 1974, 13(4): 255-265.

【25】Du P Y, Pan Y. Materials science[M]. 1st ed. Beijing: China Building Materials Industry Press, 2002.
杜丕一, 潘颐. 材料科学基础[M]. 北京: 中国建材工业出版社, 2002.

引用该论文

Sun Guifang,Tao Feng,Jiang Bo,Ji Wenxuan,Niu Muyao,Shen Xuting. Microstructure and Biomedical Properties of Laser Alloyed Cu-Co Alloys on Medical Stainless Steel[J]. Chinese Journal of Lasers, 2018, 45(12): 1202008

孙桂芳,陶丰,姜波,姬文宣,牛牧遥,沈旭婷. 医用不锈钢激光合金化铜钴合金的组织及其生物医学性能[J]. 中国激光, 2018, 45(12): 1202008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF