首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1212001--1)

纳米金刚石氮空位中心耦合机械振子的纠缠动力学特性

Entanglement Dynamic Properties of Nitrogen-Vacancy Centers Coupled to Mechanical Resonators in Nanodiamond

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了二阶磁梯度诱导的纳米金刚石氮空位(NV)色心耦合机械振子系统中两机械模式与NV色心的纠缠动力学特性,分析了系统相干角、机械模式的衰减率、NV色心的自发衰减率等对纠缠的影响。研究结果表明,选择合适的系统参数可以制备机械模式和NV色心之间的最大纠缠态;相干角对系统的纠缠动力学特性具有重要影响,当耗散存在时,通过控制相干角可以有效调节系统抵抗纠缠衰减的能力;相比于NV色心的自发衰减,机械模式的衰减使系统纠缠更快衰减和消失。

Abstract

The entanglement dynamic properties between two mechanical modes and nitrogen-vacancy(NV) centers in the system of second-order-magnetic-gradient induced nanodiamond NV center coupled to mechanical resonator are investigated. The influences of coherence angle, decay rate of mechanical modes and spontaneous decay rate of NV centers on entanglement are analyzed. The research results show that the maximum entangled state between mechanical modes and NV centers can be produced by the suitable choice of system parameters. In addition, the coherence angle has an important influence on the entanglement dynamics, and the coherence angle can be used to effectively adjust the resistance ability to entanglement attenuation when dissipation is considered. Moreover, compared to the spontaneous decay of NV centers, that of mechanical modes can make the system entanglement decay and disappear more quickly.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201845.1212001

所属栏目:量子光学

基金项目:国家自然科学基金(61368002)、江西省杰出青年人才资助计划项目(20162BCB23009)、江西省自然科学基金(20161BAB202046)、江西省教育厅科技项目(GJJ13051)、中国科学院量子信息重点实验室开放课题(KQI201704)、低维量子物理国家重点实验室开放研究基金(KF201711)

收稿日期:2018-06-07

修改稿日期:2018-07-09

网络出版日期:2018-07-30

作者单位    点击查看

廖庆洪:南昌大学信息工程学院电子信息工程系, 江西 南昌 330031中国科学院量子信息重点实验室, 安徽 合肥 230026
金鹏:南昌大学信息工程学院电子信息工程系, 江西 南昌 330031
叶杨:南昌大学信息工程学院电子信息工程系, 江西 南昌 330031

联系人作者:廖庆洪(nculqh@163.com)

【1】Tao Y, Boss J M, Moores B A, et al. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million[J]. Nature Communications, 2014, 5(4): 3638.

【2】Struck P R, Wang H, Burkard G. Nanomechanical readout of a single spin[J]. Physical Review B, 2014, 89(4): 045404.

【3】Ladd T D, Jelezko F, Laflamme R, et al. Quantum computers[J]. Nature, 2010, 464(7285): 45-53.

【4】Nunn J. Quantum engineering: Diamond envy[J]. Nature Physics, 2013, 9(3): 136-137.

【5】Acosta V M, Bauch E, Ledbetter M P, et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications[J]. Physical Review B, 2009, 80(11): 115202.

【6】Schirhagl R, Chang K, Loretz M, et al. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology[J]. Annual Review of Physical Chemistry, 2014, 65: 83-105.

【7】Degen C. Nanoscale magnetometry: Microscopy with single spins[J]. Nature Nanotechnology, 2008, 3(11): 643-644.

【8】Balasubramanian G, Chan I Y, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions[J]. Nature, 2008, 455(7213): 648-651.

【9】Maze J R, Stanwix P L, Hodges J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 2008, 455(7213): 644-647.

【10】Du B, Chen X D, Sun F W. Super-resolution microscopy using NV center in diamond[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030003.
杜博, 陈向东, 孙方稳. 基于金刚石NV色心的超分辨成像技术[J]. 激光与光电子学进展, 2017, 54(3): 030003.

【11】Balasubramanian G, Neumann P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond[J]. Nature Materials, 2009, 8(5): 383-387.

【12】Aharonovich I, Castelletto S, Simpson D A, et al. Two-level ultrabright single photon emission from diamond nanocrystals[J]. Nano Letters, 2009, 9(9): 3191-3195.

【13】Togan E, Chu Y, Trifonov A S, et al. Quantum entanglement between an optical photon and a solid-state spin qubit[J]. Nature, 2010, 466(7307): 730-734.

【14】Wang J R, Zhang Y. Detection of axis information of two adjacent nitrogen-vacancy centers with multi linearly polarized beams[J]. Laser & Optoelectronics Progress, 2017, 54(2): 022703.
王靖茹, 张勇. 利用线偏光探测两邻近氮-空位色心轴向的方法[J]. 激光与光电子学进展, 2017, 54(2): 022703.

【15】Toklikishvili Z, Chotorlishvili L, Mishra S K, et al. Entanglement dynamics of two nitrogen vacancy centers coupled by a nanomechanical resonator[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50(5): 055007.

【16】Teissier J, Barfuss A, Appel P, et al. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator[J]. Physical Review Letters, 2014, 113(2): 020503.

【17】Bennett S D, Yao N Y, Otterbach J, et al. Phonon-induced spin-spin interactions in diamond nanostructures: Application to spin squeezing[J]. Physical Review Letters, 2013, 110(15): 156402.

【18】Barfuss A, Teissier J, Neu E, et al. Strong mechanical driving of a single electron spin[J]. Nature Physics, 2015, 11(10): 820-824.

【19】Yin Z Q, Zhao N, Li T C. Hybrid opto-mechanical systems with nitrogen-vacancy centers[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(5): 1-12.

【20】Rabl P, Cappellaro P, Dutt M V G, et al. Strong magnetic coupling between an electronic spin qubit and a mechanical resonator[J]. Physical Review B, 2009, 79(4): 041302.

【21】Li T C, Yin Z Q. Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator[J]. Science Bulletin, 2016, 61(2): 163-171.

【22】Ma Y, Yin Z Q, Huang P, et al. Cooling a mechanical resonator to the quantum regime by heating it[J]. Physical Review A, 2016, 94(5): 053836.

【23】Ma Y H, Zhang X F, Song J, et al. Bistability and steady-state spin squeezing in diamond nanostructures controlled by a nanomechanical resonator[J]. Annals of Physics, 2016, 369: 36-44.

【24】Cai K, Wang R X, Yin Z Q, et al. Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(7): 070311.

【25】Meservey R, Tedrow P M. Spin-polarized electron tunneling[J]. Physics Reports, 1994, 238(4): 173-243.

【26】Peres A. Separability criterion for density matrices[J]. Physical Review Letters, 1996, 77(8): 1413-1415.

【27】Horodecki R, Horodecki M, Horodecki P. Teleportation, Bell′s inequalities and inseparability[J]. Physics Letters A, 1996, 222(1/2): 21-25.

【28】Horodecki P. Separability criterion and inseparable mixed states with positive partial transposition[J]. Physics Letters A, 1997, 232(5): 333-339.

【29】Plbnio M B, Virmani S. An introduction to entanglement measures[EB/OL]. (2006-06-10)[2018-07-23]. https://arxiv.org/abs/quant-ph/0504163

引用该论文

Liao Qinghong,Jin Peng,Ye Yang. Entanglement Dynamic Properties of Nitrogen-Vacancy Centers Coupled to Mechanical Resonators in Nanodiamond[J]. Chinese Journal of Lasers, 2018, 45(12): 1212001

廖庆洪,金鹏,叶杨. 纳米金刚石氮空位中心耦合机械振子的纠缠动力学特性[J]. 中国激光, 2018, 45(12): 1212001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF