首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1211002--1)

基于激光诱导击穿光谱技术的铜铟镓硒纳米薄膜的分析探测研究

Analytical Investigation of Cu(In, Ga)Se2 Thin Films Using Laser Induced Breakdown Spectroscopy Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

铜铟镓硒薄膜中4种元素的含量比对薄膜的性能有非常大的影响。采用磁控溅射方法在不同工作气压下制备了铜铟镓硒薄膜,利用激光诱导击穿光谱(LIBS)技术实现了铜铟镓硒薄膜中Ga含量与(In+Ga)含量之比以及Cu含量与(In+Ga)含量之比的定量分析。分析了不同工作气压下制备的铜铟镓硒薄膜中元素谱线的强度,结果表明:IGa/I(In+Ga)与薄膜的禁带宽度是对应的,均随工作气压的增加而先增大后减小,当工作气压为2.0 Pa时,获得了最大的薄膜禁带宽度;ICu/I(In+Ga)与能谱仪测得的浓度变化一致。LIBS技术能够实现薄膜中元素含量比例的快速检测,不同元素谱线强度的相对比值能够间接反映薄膜中元素含量的比值,验证了LIBS技术在薄膜分析方面的潜力,为优化磁控溅射制备铜铟镓硒薄膜的工作参数提供了方法和技术支持。

Abstract

The content ratios of four elements in Cu(In, Ga)Se2 (CIGS) thin film have great impact on performance of the thin film. CIGS thin films are deposited by magnetron sputtering at different work pressures, and the laser induced breakdown spectroscopy is used to quantitatively analyze the ratio of Ga content to In and Ga contents, as well as the ratio of Cu content and In and Ga contents. The spectral intensities of elements in CIGS deposited at different working pressures are analyzed, the results show that the intensity ratio of Ga spectral line to In and Ga spectral lines is corresponding to optical band gap, and they increase initially and then reduce with the increase of the work pressure, and the maximum optical band gaps are achieved at the pressure of 2.0 Pa, the intensity ratio of Cu spectral line to In and Ga spectral lines is nearly invariable corresponding to the value obtained from energy spectroscopy. The rapid detection of element content proportion in thin film can be realized by LIBS technology, the relative ratios of different intensities of spectral lines can indirectly reflect the element content ratios in thin film, which indicates the potential of LIBS technology in thin film analysis, providing method and technical support for optimizing working parameters in CIGS preparation by magnetron sputtering.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O657.3

DOI:10.3788/cjl201845.1211002

所属栏目:光谱学

基金项目:山东省自然科学基金(ZR2016AQ22)、国家自然科学基金(11704228,11404191)、淄博市校城融合发展计划(2016ZBXC205)

收稿日期:2018-06-21

修改稿日期:2018-07-11

网络出版日期:2018-07-20

作者单位    点击查看

修俊山:山东理工大学物理与光电工程学院, 山东 淄博 255049
刘世明:山东理工大学物理与光电工程学院, 山东 淄博 255049
王琨琨:山东理工大学物理与光电工程学院, 山东 淄博 255049
付圣贵:山东理工大学物理与光电工程学院, 山东 淄博 255049
汪涛:山东淄博汉能薄膜太阳能有限公司, 山东 淄博 255000
刘云燕:山东理工大学物理与光电工程学院, 山东 淄博 255049

联系人作者:刘云燕(liuyunyan@sdut.edu.cn)

【1】In J H, Kim C K, Lee S H, et al. Reproducibility of CIGS thin film analysis by laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(4): 473-481.

【2】Eisgruber I L, Joshi B, Gomez N, et al. In situ X-ray fluorescence used for real-time control of CuInxGa1-xSe2 thin film composition[J]. Thin Solid Films, 2002, 408(1/2): 64-72.

【3】Lundberg O, Edoff M, Stolt L. The effect of Ga-grading in CIGS thin film solar cells[J]. Thin Solid Films, 2005, 480/481: 520-525.

【4】Sanchez P, Femandez B, Menendez A, et al. A path towards a better characterisation of silicon thin‐film solar cells: depth profile analysis by pulsed radiofrequency glow discharge optical emission spectrometry[J]. Progress in Photovoltaics Research & Applications, 2014, 22(12): 1246-1255.

【5】In J H, Kim C K, Lee S H, et al. Rapid quantitative analysis of elemental composition and depth profile of Cu(In, Ga)Se2 thin solar cell film using laser-induced breakdown spectroscopy[J]. Thin Solid Films, 2015, 579: 89-94.

【6】In J H, Kim C K, Lee S H, et al. Quantitative analysis of CuIn1-xGaxSe2 thin films with fluctuation of operational parameters using laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(6): 890-900.

【7】Kim C K, In J H, Lee S H, et al. Influence of laser wavelength on the laser induced breakdown spectroscopy measurement of thin CuIn1-xGaxSe2 solar cell films[J]. Spectrochimica Acta Part B, 2013, 88: 20-25.

【8】Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor[J]. Progress in Photovoltaics: Research and Applications, 2008, 16(3): 235-239.

【9】Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 35)[J]. Progress in Photovoltaics: Research and Applications, 2010, 18(2): 435-440.

【10】Lin P Y, Fu Y S. Fabrication of CuInSe2 light absorption materials from binary precursors via wet chemical process[J]. Materials Letters, 2012, 75: 65-67.

【11】He J, Sun L, Zhang K Z, et al. Effect of post-sulfurization on the composition, structure and optical properties of Cu2ZnSnS4 thin films deposited by sputtering from a single quaternary target[J]. Applied Surface Science, 2013, 264: 133-138.

【12】Frantz J A, Bekele R Y, Nguyen V Q, et al. Cu(In, Ga)Se2 thin films and devices sputtered from a single target without additional selenization[J]. Thin Solid Films, 2011, 519(22): 7763-7765.

【13】Krishna S. Handbook of thin film deposition processes and techniques[M]. 2nd ed. New York: William Andrew Publishing, 2002.

【14】Yu Z, Yan C P, Huang T, et al. Influence of sputtering power on composition, structure and electrical properties of RF sputtered CuIn1-xGaxSe2 thin films[J]. Applied Surface Science, 2012, 258(13): 5222-5229.

【15】Fullerton E E, Pearson J, Sowers C H, et al. Interfacial roughness of sputtered multilayers: Nb/Si[J]. Physical Review B, 1993, 48(23): 17432-17444.

【16】Noufi R, Axton R, Herrington C, et al. Electronic properties versus composition of thin films of CuInSe2[J]. Applied Physics Letters, 1984, 45(6): 668-670.

【17】Jung S, Ahn S, Yun J H, et al. Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique[J]. Current Applied Physics, 2010, 10(4): 990-996.

引用该论文

Xiu Junshan,Liu Shiming,Wang Kunkun,Fu Shenggui,Wang Tao,Liu Yunyan. Analytical Investigation of Cu(In, Ga)Se2 Thin Films Using Laser Induced Breakdown Spectroscopy Technology[J]. Chinese Journal of Lasers, 2018, 45(12): 1211002

修俊山,刘世明,王琨琨,付圣贵,汪涛,刘云燕. 基于激光诱导击穿光谱技术的铜铟镓硒纳米薄膜的分析探测研究[J]. 中国激光, 2018, 45(12): 1211002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF