首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1202011--1)

Hastelloy-X粉末成分对激光选区熔化成形各向成形性能的影响

Influence of Hastelloy-X Powder Composition on Anisotropic Forming Performance of Selective Laser Melting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用相同工艺参数和热处理/热等静压技术,激光选区熔化成形两种不同粉末成分(A批原材料中碳和锰含量较高,B批原材料中硅含量较高)Hastelloy-X合金试样,测试了室温/高温拉伸性能,分析了微观组织特征及室温拉伸断口。结果表明:两种材料成形横向制件的组织形态相似,纵向制件的组织晶粒形态和晶内碳化物析出差别较大;A批组织为等轴晶,晶内碳化物析出较多,B批组织为沿纵向的柱状晶;A批材料的室温/高温拉伸性能均达到了棒材锻件标准,B批材料的横纵向拉伸性能存在较大各向异性,纵向拉伸试样呈现低强度高塑性的特点,且受硅、碳元素的影响;两批材料的室温拉伸断口均存在明显的塑性变形,为杯锥状沿晶韧窝断口。

Abstract

With the same process parameters and the heat treatment/hot isostatic pressure technique, two batches of Hastelloy-X alloy specimens with different powder compositions are processed by selective laser melting, in which batch A is high in carbon and manganese contents and while batch B is high in silicon content. The tensile properties at room and high temperatures are tested. The microstructural characteristics and tensile fractures at room temperature are investigated. The results show that the transverse structural morphologies of forming parts from two kinds of materials are similar, but the grain morphologies and the intragranular carbides are quite different in the longitudinal structures. The microstructures of batch A materials are equiaxed grains and the intragranular carbides precipitate more, and while the microstructures of batch B materials are columnar crystals along the longitudinal direction. The tensile properties of batch A specimens at room and high temperatures reach the standard of bar forgings, and while those of batch B specimens exhibit much a more obvious anisotropy in the transverse and longitudinal directions. The longitudinal tensile properties of batch B materials are characterized by low strength and high plasticity, and are subject to the effects of carbon and silicon elements. There exist an obvious plastic deformation for the fractures of the two batches of materials at room temperature, which are cup-like intergranular dimple.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG456.7

DOI:10.3788/cjl201845.1202011

所属栏目:激光制造

基金项目:科技部重点研发计划(2018YFB1106400,2017YFB1103803)

收稿日期:2018-06-22

修改稿日期:2018-08-15

网络出版日期:2018-08-24

作者单位    点击查看

魏菁:中国航发上海商用航空发动机制造有限责任公司, 上海 201306
李雅莉:中国航发上海商用航空发动机制造有限责任公司, 上海 201306
何艳丽:中国航发上海商用航空发动机制造有限责任公司, 上海 201306
侯慧鹏:中国航发上海商用航空发动机制造有限责任公司, 上海 201306
雷力明:中国航发上海商用航空发动机制造有限责任公司, 上海 201306

联系人作者:联系作者(danningshui@126.com)

【1】Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371-392.

【2】Yadollahi A, Shamsaei N. Additive manufacturing of fatigue resistant materials: challenges and opportunities[J]. International Journal of Fatigue, 2017, 98:14-31.

【3】Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013(13): 66-71.
巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013(13): 66-71.

【4】Liu Q, Liang X K, Chen J L, et al. Current status of research and application of additive manufacturing technology in foreign aerospace fields[J]. Missile and Space Transportation Technology, 2016(6): 103-106.
刘琦, 梁晓康, 陈济轮, 等. 增材制造技术在国外航天领域的研究应用现状[J]. 导弹与航天运载技术, 2016(6): 103-106.

【5】Wu K, Zhang J L, Wu B, et al. Research and development of Ni-based superalloy fabricated by laser additive manufacturing technology[J]. Journal of Iron and Steel Research, 2017, 29(12): 953-959.
吴楷, 张敬霖, 吴滨, 等. 激光增材制造镍基高温合金研究进展[J]. 钢铁研究学报, 2017, 29(12): 953-959.

【6】Zhang X W. Application of metal additive manufacturing technology in aero engine industry[J]. Journal of Aerospace Power, 2016, 31(1): 10-16.
张小伟. 金属增材制造技术在航空发动机领域的应用[J]. 航空动力学报, 2016, 31(1): 10-16.

【7】Liu Y S, Han P L, Hu S F, et al. Development of laser additive manufacturing with metallic materials and its application in aviation engines[J]. Aeronautical Manufacturing Technology, 2014(10): 62-67.
刘业胜, 韩品连, 胡寿丰, 等. 金属材料激光增材制造技术及在航空发动机上的应用[J]. 航空制造技术, 2014(10): 62-67.

【8】Lu B, Li D, Tian X Y. Development trends in additive manufacturing and 3D printing[J]. Engineering, 2015, 1(1): 085-089.

【9】Tomus D, Jarvis T, Wu X, et al. Controlling the microstructure of Hastelloy-X components manufactured by selective laser melting[J]. Physics Procedia, 2013, 41: 823-827.

【10】Li Y L, Qi H, Hou H P, et al. Effects of hot isostatic pressing on microstructure and mechanical properties of Hastelloy X samples produced by selective laser melting[C]. International Conference on Mechanics, Materials and Structural Engineering, 2017.

【11】Zhao J C, Larsen M, Ravikumar V. Phase precipitation and time-temperature-transformation diagram of Hastelloy X[J]. Materials Science & Engineering A, 2000, 293(1/2): 112-119.

【12】Wang F D. Mechanical property study on rapid additive layer manufacture Hastelloy X alloy by selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(5/6/7/8): 545-551.

【13】Etter T, Kunze K, Geiger F, et al. Reduction in mechanical anisotropy through high temperature heat treatment of Hastelloy X processed by Selective Laser Melting (SLM)[C]. IOP Conference Series: Materials Science and Engineering, 2015: 307-308.

【14】Dacian Tomusa, Rometsch P A, Heilmaier M, et al. Effect of minor alloying element on crack-formation chracteristics of Hastelloy-X manufacturing by selective laser melting[J]. Additive Manufacturing, 2017, 16: 65-72.

【15】Tomus D, Rometsch P A, Heilmaier M, et al. Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting[J]. Additive Manufacturing, 2017, 16: 65-72.

【16】Hou H P, Liang Y C, He Y L, et al. Microstructural evolution and tensile property of hastelloy-X alloys produced by selective laser melting[J]. Chinese Journal of Lasers, 2017, 44(2): 0202007.
侯慧鹏, 梁永朝, 何艳丽, 等. 选区激光熔化Hastelloy-X合金组织演变及拉伸性能[J]. 中国激光, 2017, 44(2): 0202007.

【17】Zhou L, Wang Y, Zou J W. Effect of carbon content on the microstructure and mechanical properties of powder metallurgy superalloy FGH96[J]. Powder Metallurgy Technology, 2017, 35(1): 46-52.
周磊, 汪煜, 邹金文. C元素对FGH96粉末高温合金显微组织和力学性能的影响[J]. 粉末冶金技术, 2017, 35(1): 46-52.

【18】Xu Z F, Jiang L, Dong J S, et al. The effect of silicon on precipitation and decomposition behaviors of M6C carbide in a Ni-Mo-Cr superalloy[J]. Journal of Alloys and Compounds, 2015, 620: 197-203.

【19】Wen S, Shuai L, Wei Q, et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts[J]. Journal of Materials Processing Technology, 2014, 214(11): 2660-2667.

【20】Tomus D, Tian Y, Rometsch P A, et al. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting[J]. Materials Science & Engineering A, 2016, 667:42-53.

【21】Chen H Y,Gu D D,Gu R H, et al. Study on microstructure evolution and mechanical properties of laser melting additives in 5CrNi4Mo die steel[J]. Chinese Journal of Lasers, 2016, 43(2): 0203003.
陈洪宇, 顾冬冬, 顾荣海, 等. 5CrNi4Mo模具钢选区激光熔化增材制造组织演变及力学性能研究[J]. 中国激光, 2016, 43(2): 0203003.

引用该论文

Wei Jing,Li Yali,He Yanli,Hou Huipeng,Lei Liming. Influence of Hastelloy-X Powder Composition on Anisotropic Forming Performance of Selective Laser Melting[J]. Chinese Journal of Lasers, 2018, 45(12): 1202011

魏菁,李雅莉,何艳丽,侯慧鹏,雷力明. Hastelloy-X粉末成分对激光选区熔化成形各向成形性能的影响[J]. 中国激光, 2018, 45(12): 1202011

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF