首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1206003--1)

532 nm光诱导下低损耗As2S3光纤纤芯的光敏性及其光阻断效应现象

Photosensitivity and Optical Stopping Effect of Low-Loss As2S3 Optical Fiber Core under 532 nm Light Irradiation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

实验研究了低损耗硫系玻璃As2S3光纤的纤芯在532 nm近带隙光照射下的光敏性。实验结果表明,光开始照射时其纤芯的光致折射率变化朝负方向快速减小,然后随着光照时间延长,折射率变化朝正方向缓慢恢复增加。这两个过程经历的时间和折射率变化的大小均取决于光照功率。光照功率增大到一定阈值时,在恢复过程中,光致折射率变化出现正增加,且随光照功率继续增大和曝光时间延长,折射率变化可增加到约3×10-3。另外,实验初步制备了As2S3光纤的布拉格光栅,曝光期间其中心波长先蓝移,后恢复并红移。同时,实验还发现,在近带隙光照下As2S3光纤出现光阻断效应现象, 其截止效率约为55%。

Abstract

The photosensitivity of a low-loss As2S3 chalcogenide glass fiber core under 532 nm near-bandgap light irradiation is experimentally investigated. The experimental results show that at the beginning of light irradiation, the photo-induced refractive index change of the fiber core first decreases rapidly towards the negative direction, and then recovers and increases gradually towards the positive direction with the extension of irradiation time. As for these two processes, the time duration and the refraction index change value are determined by light irradiation power. As the irradiation power increases to a certain threshold value, the photo-induced refractive index change shows a positive increment in the recovery process, and the refractive index change can be increased to about 3×10-3 with the further increases of irradiation power and exposure time. In addition, the As2S3 fiber Bragg grating is experimentally fabricated and its central wavelength occurs blue shift-recovery-red shift during exposure. At the same time, the experimental results also disclose that the optical stopping phenomenon with a cut-off efficiency of about 55% is observed in the As2S3 fiber under near-bandgap light irradiation.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.3788/cjl201845.1206003

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61465008)

收稿日期:2018-06-26

修改稿日期:2018-07-10

网络出版日期:2018-08-07

作者单位    点击查看

邹林儿:南昌大学物理系, 江西 南昌 330031
张泽:南昌大学物理系, 江西 南昌 330031
傅继武:南昌大学物理系, 江西 南昌 330031
陈抱雪:上海理工大学光电信息与计算机工程学院, 上海 200093

联系人作者:邹林儿(Linerzou@ncu.edu.cn)

【1】Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 2011, 5(3): 141-148.

【2】Théberge F, Mathieu P, Thiré N, et al. Mid-infrared nonlinear absorption in As2S3 chalcogenide glass[J]. Optics Express, 2016, 24(21): 24600-24610.

【3】He Y J, Nie Q H, Sun J, et al. Novel Ge-Te-I far-infrared-transmitting chalcogenide glasses system[J]. Acta Photonica Sinica, 2011, 40(9): 1307-1311.
何钰钜, 聂秋华, 孙杰, 等. 新型远红外Ge-Te-I硫系玻璃性能研究[J]. 光子学报, 2011, 40(9): 1307-1311.

【4】Fu X H, Jiang H Y, Zhang J, et al. Preparation of short and medium wave infrared anti-reflective coating based on chalcogenide glass[J]. Chinese Journal of Lasers, 2017, 44(9): 0903002.
付秀华, 姜洪妍, 张静, 等. 基于硫系玻璃的短中波红外减反膜研制[J]. 中国激光, 2017, 44(9): 0903002.

【5】Liu Q M, Zhao X J, Gan F X. Second harmonic generation in the system Ge-As-S and analysis of the poling mechanism[J]. Acta Physica Sinica, 2000, 49(9): 1726-1730.
刘启明, 赵修建, 干福熹. Ge-As-S体系玻璃中光学二次谐波发生及其极化机理分析[J]. 物理学报, 2000, 49(9): 1726-1730.

【6】Zou L E, He P P, Chen B X, et al. Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation[J]. AIP Advances, 2017, 7(2): 025003.

【7】Zhang M J, Yang Z Y, Li L, et al. The effects of germanium addition on properties of Ga-Sb-S chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 2016, 452: 114-118.

【8】Pelusi M D, Ta′eed V G, Fu L B, et al. Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 529-539.

【9】Pelusi M D, Luan F, Madden S, et al. Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip[J]. IEEE Photonics Technology Letters, 2010, 22(1): 3-5.

【10】Florea C, Sanghera J S, Shaw B, et al. Fiber Bragg gratings in As2S3 fibers obtained using a 0/-1 phase mask[J]. Optical Materials, 2009, 31(6): 942-944.

【11】Xu H, Dai S X, Zhang P Q, et al. Research progress in chalcogenide glass Raman fiber lasers[J]. Laser and Optoelectronics Progress, 2016, 53(3): 030004.
徐航, 戴世勋, 张培晴, 等. 硫系拉曼光纤激光器研究进展[J]. 激光与光电子学进展, 2016, 53(3): 030004.

【12】Gao W Q, Duan Z C, Asano K, et al. Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber[J]. Applied Physics B, 2014, 116(4): 847-853.

【13】Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10): 647-649.

【14】Zou L E, Chen B X, Lin H S, et al. Fabrication and propagation characterization of As2S8 chalcogenide channel waveguide made by UV irradiation annealing[J]. Applied Optics, 2009, 48(33): 6442-6447.

【15】van Popta A, DeCorby R G, Haugen C J, et al. Photoinduced refractive index change in As2Se3 by 633 nm illumination[J]. Optics Express, 2002, 10(15): 639-644.

【16】Tanaka K, Ohtsuka Y. Composition dependence of photo-induced refractive index changes in amorphous As S films[J]. Thin Solid Films, 1979, 57(1): 59-64.

【17】Zou L E, Chen B X, Du L P, et al. Photo- and thermally induced changes in the refractive index and film thickness of amorphous As2S8 film[J]. Journal of Applied Physics, 2008, 103(12): 123523.

【18】Khan P, Barik A R, Vinod E M, et al. Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films[J]. Optics Express, 2012, 20(11): 12416-12421.

【19】Popescu M, Hoyer W. Structural features and mechanism of reversible photoinduced transformations in amorphous chalcogenides[J]. Journal of Optoelectronics & Advanced Materials, 2002, 4(4): 867-874.

【20】Brawley G A, Ta′eed V G, Bolger J A, et al. Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method[J]. Electronics Letters, 2008, 44(14): 846-847.

【21】Ahmad R, Rochette M, Baker C. Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires[J]. Optics Letters, 2011, 36(15): 2886-2888.

【22】Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 1989, 14(15): 823-825.

【23】Kabakova I V, Zou L E, Brawley G A, et al. Dynamics of photoinduced refractive index changes in As2S3 fibers[J]. Applied Optics, 2012, 51(30): 7333-7338.

【24】Zou L E, Chen B X, Chen L, et al. Fabrication of an As2S8 stripe waveguide with an optical stopping effect by exposure to ultraviolet irradiation[J]. Applied Physics Letters, 2006, 88(15): 153510.

【25】Abdulhalim I, Gelbaor M, Klebanov M, et al. Photoinduced phenomena in nano-dimensional glassy As2S3 films[J]. Optical Materials Express, 2011, 1(7): 1192-1201.

【26】Lyubin V M, Klebanov M L. Photo-Induced Anisotropy in Chalcogenide Glassy Semiconductors[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007: 91-108.

【27】Abdulhalim I. Model for photoinduced defects and photorefractivity in optical fibers[J]. Applied Physics Letters, 1995, 66(24): 3248-3250.

【28】Zou L E, Kabakova I V, Mgi E C, et al. Efficient inscription of Bragg gratings in As2S3 fibers using near bandgap light[J]. Optics Letters, 2013, 38(19): 3850-3853.

【29】Zou L E, He P P, Fu J W, et al. Fabrication of Bragg gratings in low-loss As2S3 chalcogenide fibers using +1/-1 phase mask and 532 nm laser[J]. Acta Photonica Sinica, 2017, 46(7): 0706001.
邹林儿, 何盼盼, 傅继武, 等. +1/-1相位掩模板和532 nm激光下低损耗As2S3硫系光纤布喇格光栅的制备[J]. 光子学报, 2017, 46(7): 0706001.

【30】Wang G D, Chen B X, Wang P, et al. Mechanism of optical stopping effect of arsenic sulfide amorphous waveguide[J]. Acta Physica Sinica, 2011, 60(7): 074224.
王关德, 陈抱雪, 王平, 等. 硫化砷非晶态波导光阻断效应的机理研究[J]. 物理学报, 2011, 60(7): 074224.

【31】Du L P, Chen B X, Sun B, et al. Optical stopping effect of impurity-doping As2S8 glass waveguide[J]. Acta Physica Sinica, 2008, 57(6): 3593-3599.
杜丽萍, 陈抱雪, 孙蓓, 等. 掺杂As2S8非晶态薄膜波导的光阻断效应[J]. 物理学报, 2008, 57(6): 3593-3599.

引用该论文

Zou Liner,Zhang Ze,Fu Jiwu,Chen Baoxue. Photosensitivity and Optical Stopping Effect of Low-Loss As2S3 Optical Fiber Core under 532 nm Light Irradiation[J]. Chinese Journal of Lasers, 2018, 45(12): 1206003

邹林儿,张泽,傅继武,陈抱雪. 532 nm光诱导下低损耗As2S3光纤纤芯的光敏性及其光阻断效应现象[J]. 中国激光, 2018, 45(12): 1206003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF