首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1204006--1)

利用高灵敏的无自旋交换弛豫原子磁力仪实现脑磁测量

Human Magnetoencephalography Measurement by Highly Sensitive SERF Atomic Magnetometer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了基于无自旋交换弛豫(SERF)的高灵敏度非低温铷原子磁力仪,其灵敏度在15 Hz处达到了6 fT/Hz。利用此SERF磁力仪,在屏蔽筒内测量了人脑视觉皮层在睁眼和闭眼状态下的磁场差异。该SERF磁力仪采用抽运-探测双光模式,与单光配置相比,双光SERF磁力仪可以实现更高的灵敏度,并且不需要额外的磁场调制,因此省略了采集系统中复杂的锁相放大器。这种装置更有利于实现小型化的全头脑磁图传感器阵列。

Abstract

A highly sensitive noncryogenic rubidium magnetometer based on spin exchange relaxation free (SERF) is designed, whose sensitivity at 15 Hz is 6 fT/Hz. With this SERF magnetometer, the difference in the human brain magnetic field induced by eye opening and closing is recorded inside the shielded barrel. This SERF magnetometer is operated in double light mode with a pump-probe arrangement. Compared with single beam arrangement, this SERF magnetometer can achieve a higher sensitivity and does not require any extra magnetic modulation. Thus, the complexity of the acquisition system is reduced and the lock-in amplifier is not needed any more. Moreover, this kind of configuration is easily adapted to miniaturize the sensor array for the future whole-head magnetoencephalography equipment.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O562

DOI:10.3788/cjl201845.1204006

所属栏目:测量与计量

基金项目:国家自然科学基金(61727821,61475139)、青年科学基金(11704335)

收稿日期:2018-06-26

修改稿日期:2018-07-17

网络出版日期:2018-08-24

作者单位    点击查看

黄圣洁:浙江工业大学理学院生物与医学物理信息技术协同创新中心, 浙江 杭州 310023
张桂迎:浙江工业大学理学院生物与医学物理信息技术协同创新中心, 浙江 杭州 310023
胡正珲:浙江工业大学理学院生物与医学物理信息技术协同创新中心, 浙江 杭州 310023
林强:浙江工业大学理学院生物与医学物理信息技术协同创新中心, 浙江 杭州 310023

联系人作者:林强(qlin@zjut.edu.cn)

【1】Cheyne D, Bostan A C, Gaetz W, et al. Event-related beamforming: a robust method for presurgical functional mapping using MEG[J]. Clinical Neurophysiology, 2007, 118(8): 1691-1704.

【2】Colon A J, Ossenblok P, Nieuwenhuis L, et al. Use of routine MEG in the primary diagnostic process of epilepsy[J]. Journal of Clinical Neurophysiology, 2009, 26(5): 326-332.

【3】Gratta C D, Pizzella V, Tecchio F, et al. Magnetoencephalography: a noninvasive brain imaging method with 1 ms time resolution[J]. Reports on Progress in Physics, 2001, 64(12): 1759-1814.

【4】Cohen D, Cuffin B N. Demonstration of useful differences between magnetoencephalogram and electroencephalogram[J]. Electroencephalography and Clinical Neurophysiology, 1983, 56(1): 38-51.

【5】Hamalainen M, Hari R, Ilmoniemi R J, et al. Magnetoencephalography:theory, instrumentation, and applications to noninvasive studies of the working human brain[J]. Reviews of Modern Physics, 1993, 65(2): 413-497.

【6】Cohen D. Magnetoencephalography: detection of the brain′s electrical activity with a superconducting magnetometer[J]. Science, 1972, 175(4022): 664-666.

【7】Liang S Q, Yang G Q, Xu Y F, et al. Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer[J]. Optics Express, 2014, 22(6): 6837-6843.

【8】Budker D, Gawlik W, Kimball D F, et al. Resonant nonlinear magneto-optical effects in atoms[J]. Physical Review, 2002, 74(4): 1153-1201.

【9】Yang A L, Yang G Q, Cai X M, et al. A laser pump-re-pump atomic magnetometer[J]. Chinese Physics B, 2013, 22(12): 120702.

【10】Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 1973, 31(5): 273-276.

【11】Happer W, Tang H. Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors[J]. Physical Review A, 1977, 16(5): 1877-1891.

【12】Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 151110.

【13】Sander T H, Preusser J, Mhaskar R, et al. Magnetoencephalography with a chip-scale atomic magnetometer[J]. Biomedical Optics Express, 2012, 3(5): 981-990.

【14】Xia H, Ben-Amar Baranga A, Hoffman D, et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 2006, 89(21): 211104.

【15】Johnson C, Schwindt P D D, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Applied Physics Letters, 2010, 97(24): 243703.

【16】Kamada K, Sato D, Ito Y, et al. Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer[J]. Japanese Journal of Applied Physics, 2015, 54(2): 026601.

【17】Colombo A P, Carter T R, Borna A, et al. Four-channel optically pumped atomic magnetometer for magnetoencephalography[J]. Optics Express, 2016, 24(14): 15403-15416.

【18】Boto E, Holmes N, Leggett J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018, 555(7698): 657-661.

【19】Sheng J W, Wan S G, Sun Y F, et al. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer[J]. Review of Scientific Instruments, 2017, 88(9): 094304.

【20】Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13): 130801.

【21】Kornack T W, Smullin S J, Lee S K, et al. A low-noise ferrite magnetic shield[J]. Applied Physics Letters, 2007, 90(22): 223501.

【22】Smullin S J, Savukov I M, Vasilakis G, et al. Low-noise high-density alkali-metal scalar magnetometer[J]. Physical Review A, 2009, 80(33): 033420.

【23】Ledbetter M P, Savukov I M, Acosta V M, et al. Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Physical Review A, 2008, 77(3): 033408.

【24】Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.

【25】Hansen P C, Kringelbach M L, Salmelin R. MEG: an introduction to methods[M]. Oxford: Oxford University Press, 2010: 35, 169.

引用该论文

Huang Shengjie,Zhang Guiying,Hu Zhenghui,Lin Qiang. Human Magnetoencephalography Measurement by Highly Sensitive SERF Atomic Magnetometer[J]. Chinese Journal of Lasers, 2018, 45(12): 1204006

黄圣洁,张桂迎,胡正珲,林强. 利用高灵敏的无自旋交换弛豫原子磁力仪实现脑磁测量[J]. 中国激光, 2018, 45(12): 1204006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF