首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1201005--1)

基于玻璃分相技术的大芯径掺镱光纤及其激光研究

Extra-Large-Core Yb3+ Doped Fiber and Its Laser Research Based on Glass Phase-Separation Technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

报道了一种基于玻璃分相技术制备大尺寸(直径为3 mm,长度为270 mm)掺镱(Yb3+)石英玻璃芯棒,进而制备大芯径(纤芯直径为80 μm,外包层直径为400 μm)掺Yb3+双包层光纤的新技术。实验测试了光纤的折射率剖面、Yb3+吸收谱以及背景损耗,并演示了其激光性能。结果表明:该光纤的纤芯折射率分布均匀,数值孔径约为0.065;Yb3+的掺杂浓度(质量分数)为1.22%,在976 nm处的吸收系数为6.5 dB/m,在793 nm处的背景损耗为0.03 dB/m;基于主控振荡器的功率放大器结构,光纤在976 nm半导体激光器抽运下实现了1080 nm激光输出,光纤长度为2.5 m,斜率效率达到78%,最大激光输出功率为300 W。玻璃分相技术为制备大尺寸、高均匀性有源石英玻璃芯棒提供了新的技术路径,在制备大芯径高掺杂光纤及具有复杂纤芯结构的有源光纤方面具有巨大潜力。

Abstract

A novel technique, for the fabrication of large size Yb3+ doped silica glass rod with a diameter of 3 mm and a length of 270 mm and thus a large-core double-clad fiber with a diameter of 80 μm and an outer cladding layer diameter of 400 μm by the glass phase-separation technology, is reported. The refractive index profile, Yb3+ absorption spectrum and background loss are experimentally tested, and the laser performances are also demonstrated. The results show that the refractive index distributes uniformly within the active fiber core of this fiber and the the numerical aperture is about 0.065. The doping concentration of Yb3+ (mass fraction) is 1.22%, the absorption coefficient at 976 nm is 6.5 dB/m, and the background loss at 793 nm is 0.03 dB/m. Based on the power amplifier structure of the master oscillator, the lasing output at 1080 nm is realized for this fiber when pumped by a diode laser at 976 nm, where the fiber length is 2.5 m, the slope efficiency is 78%, and the maximum laser output power is 300 W. The glass phase-separation technique provides a novel technique route to fabricate the active silica glass core rods with large size and high uniformity, which has a high potential in the fabrication of heavily doped extra-large-core fibers and active fibers with a complex core structure.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN244

DOI:10.3788/cjl201845.1201005

所属栏目:激光器件与激光物理

基金项目:国家重点研发计划(2017YFB1102201)、国家自然科学基金(61575075)、中国博士后科学基金(2017M612450)

收稿日期:2018-06-28

修改稿日期:2018-08-06

网络出版日期:2018-08-09

作者单位    点击查看

褚应波:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
刘永光:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
刘长波:武汉长进激光技术有限公司, 湖北 武汉 430074
戴能利:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
杨旅云:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
李进延:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074

联系人作者:李进延(ljy@hust.edu.cn)

【1】Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092.

【2】Zhao G Z, Xiao X S, Meng F, et al. An all-polarization-maintaining repetition-tunable erbium-doped passively mode-locked fiber laser[J]. Chinese Physics B, 2013, 22(10): 104205.

【3】Xu S Q, Yang Z M, Dai S X, et al. Spectral properties of erbium-doped heavy metal oxyfluoride silicate glasses for broadband amplification[J]. Chinese Physics Letters, 2003, 12(9): 997-1000.

【4】Wang Y B, Chen G, Xie L, et al. Experimental research of high performance fiber and fiber laser at 1018 nm[J]. Acta Physica Sinica, 2013, 62(6): 064210.
王一礴, 陈瑰, 谢璐, 等. 高性能1018 nm光纤及激光器实验研究[J]. 物理学报, 2013, 62(6): 064210.

【5】Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Optics Express, 2003, 11(7): 818-823.

【6】Xie L, Chen G, Wang Y B, et al. Ytterbium doped silica fiber laser at 1018 nm[J]. Acta Optica Sinica, 2013, 33(7): 0714002.
谢璐, 陈瑰, 王一礴, 等. 1018 nm掺镱光纤激光器[J]. 光学学报, 2013, 33(7): 0714002.

【7】Schülzgen A, Li L, Temyanko V L, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber[J]. Optics Express, 2006, 14(16): 7087-7092.

【8】Lin A, Zhang A, Bushong E J, et al. Solid-core tellurite glass fiber for infrared and nonlinear applications[J]. Optics express, 2009, 17(19): 16716-16721.

【9】Jackson S D. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Optics letters, 2009, 34(15): 2327-2329.

【10】Dhar A, Paul M C, Pal M, et al. Characterization of porous core layer for controlling rare earth incorporation in optical fiber[J]. Optics Express, 2006, 14(20): 9006-9015.

【11】Yi Y Q, Tian H S, Ning D. Study of the influence of the deposition temperature by using the MCVD technique on the rare earth ion concentration of active fiber[J]. Optical Communication Technology, 2007, 31(1): 60-61.
衣永青, 田海生, 宁鼎. MCVD工艺沉积温度对有源光纤掺杂浓度的影响研究[J]. 光通信技术, 2007, 31(1): 60-61.

【12】Wang Y B, Li J Y. Status and development tendency of high power ytterbium doped fibers[J].Chinese Journal of Lasers, 2017, 44(2): 0201009.
王一礴, 李进延. 高功率掺镱光纤的现状及发展趋势[J]. 中国激光, 2017, 44(2): 0201009.

【13】Tang F Z, McNamara P, Barton G W, et al. Microscale inhomogeneities in aluminum solution-doping of silica-based optical fibers[J]. Journal of the American Ceramic Society, 2007, 90(1): 23-28.

【14】Dhar A, Paul M C, Pal M, et al. An improved method of controlling rare earth incorporation in optical fiber[J]. Optics Communications, 2007, 277(2): 329-334.

【15】Dhar A, Pal A, Paul M C, et al. The mechanism of rare earth incorporation in solution doping process[J]. Optics Express, 2008, 16(17): 12835-12846.

【16】Monteil A, Chaussedent S, Alombert-Goget G, et al. Clustering of rare earth in glasses, aluminum effect: experiments and modeling[J]. Journal of Non-Crystalline Solids, 2004, 348: 44-50.

【17】Langner A, Schtz G, Such M, et al. A new material for high-power laser fibers[J]. Proceedings of SPIE, 2008, 6873: 687311.

【18】Langner A, Such M, Schtz G, et al. New developments in high power fiber lasers based on alternative materials[J]. Proceedings of SPIE, 2011, 7914: 79141U.

【19】Xu W, Lin Z, Wang M, et al. 50 μm core diameter Yb3+/Al3+/F- codoped silica fiber with M2<1.1 beam quality[J]. Optics Letters, 2016, 41(3): 504-507.

【20】Chen D, Miyoshi H, Akai T, et al. Colorless transparent fluorescence material: sintered porous glass containing rare-earth and transition-metal ions[J]. Applied Physics Letters, 2005, 86(23): 231908.

【21】Yang L Y, Yamashita M, Akai T. Green and red high-silica luminous glass suitable for near-ultraviolet excitation[J]. Optics Express, 2009, 17(8): 6688-6695.

【22】Liu Z, Dai N, Luan H, et al. Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass[J]. Optics Express, 2010, 18(20): 21138-21146.

【23】Chu Y, Yang Y, Liao L, et al. Enhanced green upconversion luminescence in Yb3+/Tb3+-codoped silica fiber based on glass phase-separated method[J]. Applied Physics A, 2015, 120(4): 1315-1322.

【24】Enke D, Janowski F, Schwieger W. Porous glasses in the 21st century: a short review[J]. Microporous and Mesoporous Materials, 2003, 60(1/2/3): 19-30.

【25】Dvoyrin V V, Mashinsky V M, Bulatov L I, et al. Bismuth-doped-glass optical fibers: a new active medium for lasers and amplifiers[J]. Optics Letters, 2006, 31(20): 2966-2968.

【26】Humbach O, Fabian H, Grzesik U, et al. Analysis of OH absorption bands in synthetic silica[J]. Journal of Non-Crystalline Solids, 1996, 203: 19-26.

【27】Yang L Y, Dai N L, Liu Z J, et al. Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence[J]. Journal of Materials Chemistry, 2011, 21(17): 6274-6279.

引用该论文

Chu Yingbo,Liu Yongguang,Liu Changbo,Dai Nengli,Yang Lüyun,Li Jinyan. Extra-Large-Core Yb3+ Doped Fiber and Its Laser Research Based on Glass Phase-Separation Technique[J]. Chinese Journal of Lasers, 2018, 45(12): 1201005

褚应波,刘永光,刘长波,戴能利,杨旅云,李进延. 基于玻璃分相技术的大芯径掺镱光纤及其激光研究[J]. 中国激光, 2018, 45(12): 1201005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF