首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1202006--1)

飞秒激光直写实现氧化锗玻璃内部光调制

Realization of Optical Modulation in Germanium Oxide Glass by Femtosecond Laser Direct Writing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用脉宽和重复频率可调的超快激光系统,研究了氧化锗玻璃内部自组装纳米光栅的结构特点和关键影响因素。确定了氧化锗玻璃中纳米光栅的形成阈值,发现其与材料的带隙及激光的脉宽有关。在优化加工参数的基础上,利用纳米光栅的双折射特性,在氧化锗玻璃内部实现了光学微元件,并演示了其功能。分析了飞秒激光的重复频率对纳米光栅的形成和结构性能的影响,发现氧化锗玻璃中纳米光栅的双折射强度具有反常的偏振依赖性,并分析了这种现象出现的原因。

Abstract

The structural characteristics and the key influencing factors of self-assembled nanogratings within GeO2 glass are investigated by using an ultrafast laser system with tunable repetition rate and pulse duration. The formation threshold of nanogratings in GeO2 glass is experimentally determined, which is dependent on material bandgap and laser pulse duration. In addition, based on the optimization of process parameters and the use of birefringence of nanogratings, the micro-optical components are fabricated within GeO2 glass and their functions are demonstrated. Moreover, the influence of repetition rate of femtosecond laser on the formation and structural properties of nanogratings is also analyzed. It is found that the birefringence strength of nanograting in GeO2 glass has an anomalous polarization dependence, and the corresponding origin is speculated.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/cjl201845.1202006

所属栏目:激光制造

基金项目:国家自然科学基金(11774071,11704079)、广东工业大学“百人计划”启动基金(220418098)

收稿日期:2018-06-28

修改稿日期:2018-07-20

网络出版日期:2018-08-10

作者单位    点击查看

张芳腾:广东工业大学物理与光电工程学院, 广东 广州 510006华南理工大学材料科学与工程学院发光材料与器件国家重点实验室, 广东 广州 510640
聂兆刚:广东工业大学物理与光电工程学院, 广东 广州 510006
邱建荣:华南理工大学材料科学与工程学院发光材料与器件国家重点实验室, 广东 广州 510640浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027

联系人作者:聂兆刚(zgniegdut@163.com); 邱建荣(qjr@scut.edu.cn);

【1】Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2: 219-225.

【2】Tan D Z, Sharafudeen K N, Yue Y Z, et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications[J]. Progress in Materials Science, 2016, 76: 154-228.

【3】Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 1996, 21(21): 1729-1731.

【4】Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters, 1997, 71(7): 882-884.

【5】Shimotsuma Y, Hirao K, Kazansky P G, et al. Three-dimensional micro-and nano-fabrication in transparent materials by femtosecond laser[J]. Japanese Journal of Applied Physics, 2005, 44(7A): 4735-4748.

【6】Shimotsuma Y, Kazansky P G, Qiu J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405.

【7】Kanehira S, Si J H, Qiu J R, et al. Periodic nanovoid structures via femtosecond laser irradiation[J]. Nano Letters, 2005, 5(8): 1591-1595.

【8】Kazansky P G, Inouye H, Mitsuyu T, et al. Anomalous anisotropic light scattering in Ge-doped silica glass[J]. Physical Review Letters, 1999, 82(10): 2199-2202.

【9】Hnatovsky C, Taylor R S, Simova E, et al. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica[J]. Optics Letters, 2005, 30(14): 1867-1869.

【10】Bricchi E, Kazansky P G. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass[J]. Applied Physics Letters, 2006, 88(11): 111119.

【11】Qiu J R, Kazanski P G, Si J H, et al. Memorized polarization-dependent light scattering in rare-earth-ion-doped glass[J]. Applied Physics Letters, 2000, 77(13): 1940-1942.

【12】Liao Y, Cheng Y, Liu C N, et al. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration[J]. Lab on a Chip, 2013, 13(8): 1626-1631.

【13】Beresna M, Geceviius M, Kazansky P G, et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass[J]. Applied Physics Letters, 2011, 98(20): 201101.

【14】Geceviius M, Beresna M, Kazansky P G. Polarization sensitive camera by femtosecond laser nanostructuring[J]. Optics Letters, 2013, 38(20): 4096-4099.

【15】Shimotsuma Y, Sakakura M, Kazansky P G, et al. Ultrafast manipulation of self-assembled form birefringence in glass[J]. Advanced Materials, 2010, 22(36): 4039-4043.

【16】Zhang J Y, Geceviius M, Beresna M, et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 2014, 112(3): 033901.

【17】Hnatovsky C, Taylor R S, Rajeev P P, et al. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica[J]. Applied Physics Letters, 2005, 87(1): 014104.

【18】Bhardwaj V R, Simova E, Rajeev P P, et al. Optically produced arrays of planar nanostructures inside fused silica[J]. Physical Review Letters, 2006, 96(5): 057404.

【19】Richter S, Jia F, Heinrich M, et al. The role of self-trapped excitons and defects in the formation of nanogratings in fused silica[J]. Optics Letters, 2012, 37(4): 482-484.

【20】Beresna M, Geceviius M, Kazansky P G, et al. Exciton mediated self-organization in glass driven by ultrashort light pulses[J]. Applied Physics Letters, 2012, 101(5): 053120.

【21】Wang J C, Zhang F T, Qiu J R. Research progression single femtosecond laser induced nanogratings in glass: Fundamentals and applications[J]. Chinese Journal of Lasers, 2017, 44(1): 0102001.
王珏晨, 张芳腾, 邱建荣. 单光束飞秒激光诱导玻璃内部纳米光栅机理及应用研究进展[J]. 中国激光, 2017, 44(1): 0102001.

【22】Dai Y, Ye J Y, Gong M, et al. Forced rotation of nanograting in glass by pulse-front tilted femtosecond laser direct writing[J]. Optics Express, 2014, 22(23): 28500-28505.

【23】Richter S, Miese C, Dring S, et al. Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULETM[J]. Optical Materials Express, 2013, 3(8): 1161-1166.

【24】Umran F A, Liao Y, Elias M M, et al. Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation[J]. Optics Express, 2013, 21(13): 15259-15267.

【25】Zhang F T, Zhang H, Dong G P, et al. Embedded nanogratings in germanium dioxide glass induced by femtosecond laser direct writing[J]. Journal of the Optical Society of America B, 2014, 31(4): 860-864.

【26】Cao J, Mazerolles L, Lancry M, et al. Form birefringence induced in multicomponent glass by femtosecond laser direct writing[J]. Optics Letters, 2016, 41(12): 2739-2742.

【27】Asai T, Shimotsuma Y, Kurita T, et al. Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing[J]. Journal of the American Ceramic Society, 2015, 98(5): 1471-1477.

【28】Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 1996, 53(4): 1749-1761.

【29】Liao Y, Zeng B, Qiao L L, et al. Threshold effect in femtosecond laser induced nanograting formation in glass: Influence of the pulse duration[J]. Applied Physics A, 2014, 114(1): 223-230.

【30】Eaton S M, Zhang H B, Ng M L, et al. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides[J]. Optics Express, 2008, 16(13): 9443-9458.

【31】Hasman E, Bomzon Z, Niv A, et al. Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures[J]. Optics Communications, 2002, 209(1/2/3): 45-54.

【32】Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 2007, 15(4): 1913-1922.

引用该论文

Zhang Fangteng,Nie Zhaogang,Qiu Jianrong. Realization of Optical Modulation in Germanium Oxide Glass by Femtosecond Laser Direct Writing[J]. Chinese Journal of Lasers, 2018, 45(12): 1202006

张芳腾,聂兆刚,邱建荣. 飞秒激光直写实现氧化锗玻璃内部光调制[J]. 中国激光, 2018, 45(12): 1202006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF