首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1202007--1)

高速激光电弧复合焊接高强钢焊缝的形貌及成形机理

Appearances and Formation Mechanism of Welds in High-Strength Steels by High Speed Laser-Arc Hybrid Welding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以3 mm厚高强钢为试验材料,采用光纤激光-熔化极稀有气体保护焊电弧复合焊接方法,研究了焊速为5 m·min-1时激光功率与电弧电压对焊缝形貌的影响,并与低速焊接中厚板得到的焊缝形貌进行了比较。研究结果表明,增大电弧电压和激光功率均能提高焊接过程的稳定性,获得良好的焊缝成形。在不同的热源位置下,焊缝形貌会出现浅“Y”型和深“Y”型的区别。通过高速摄影发现,当激光前置时,熔滴尺寸较大,且过渡时易发生汽化爆炸,对熔池的冲击较大;当电弧前置时,匙孔稳定存在,液态金属能沿着孔壁向下流淌,增大熔池底部面积。在低速焊接中厚板时,由于焊接线能量及工件的表面张力存在差异,焊缝形貌与高速焊接薄板时得到的形貌不一致。

Abstract

The 3 mm thick high-strength steels are taken as test materials and the technique of fiber laser-arc hybrid welding assisted by metal inert gas is chosen. The effects of laser power and arc voltage at welding speed of 5 m·min-1 on weld appearances are investigated. The comparison with those weld appearances generated in low speed welding of thick plates is conducted. The research results show that the increases of laser power and arc voltage can ensure the improvement of welding stability and the obtainment of good weld formation. There exist different shallow and deep Y-type weld appearances at different heat source positions. The high-speed photography indicates that the droplet size is relatively large in the laser leading mode. In addition, it is prone to vaporization and explosion in the transfer process. Thus, the impact on molten pool are relatively strong. In contrast, in the arc leading mode, the keyholes are stable. The liquid metal flows down along the keyhole walls and thus the bottom area of molten pool increases. As for the low speed welding of thick plates, the weld appearances are not consistent with those for high speed welding of thin plates due to the differences in welding line energy and surface tension of workpieces.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG456.7

DOI:10.3788/cjl201845.1202007

所属栏目:激光制造

基金项目:国家自然科学基金(51375294, 51605276)、上海市“创新行动计划”基础研究领域项目(17JC1400600,17JC1400601)、上海汽车工业科技发展基金会(1604)

收稿日期:2018-07-04

修改稿日期:2018-07-20

网络出版日期:2018-08-10

作者单位    点击查看

顾思远:上海工程技术大学材料工程学院, 上海 201620
刘政君:上海工程技术大学材料工程学院, 上海 201620
张培磊:上海工程技术大学材料工程学院, 上海 201620上海市激光先进制造技术协同创新中心, 上海 201620
于治水:上海工程技术大学材料工程学院, 上海 201620上海市激光先进制造技术协同创新中心, 上海 201620
叶欣:上海工程技术大学材料工程学院, 上海 201620上海市激光先进制造技术协同创新中心, 上海 201620
顾勇:上海汇众汽车制造有限公司, 上海 200122

联系人作者:张培磊(peilei@sues.edu.cn); 顾思远(m18302181668_1@163.com); 于治水(yu_zhishui@163.com);

【1】Liu M H. Research on laser-arc hybrid welding technology of high strength steels[D]. Jilin: Changchun University of Science and Technology, 2011.
刘明辉. 高强钢激光-电弧复合焊接技术研究[D]. 吉林: 长春理工大学, 2011.

【2】Moradi M, Ghoreishi M, Frostevarg J, et al. An investigation on stability of laser hybrid arc welding[J]. Optics and Lasers in Engineering, 2013, 51(4): 481-487.

【3】Li X. Laser-arc hybrid welding performances of high strength steel[D]. Liaoning: Shenyang University of Technology, 2015.
李响. 高强钢的激光-电弧复合焊接性能研究[D]. 辽宁: 沈阳工业大学, 2015.

【4】Kah P, Salminen A, Martikainen J. The effect of the relative location of laser beam and arc in different hybrid welding process[J]. Mechanika, 2010, 3(83): 68-74.

【5】Bunaziv I, Akselsen O M, Salminen A, et al. Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy [J]. Journal of Materials Processing Technology, 2016, 233: 107-114.

【6】Miao H B, Yu G, He X L, et al. Comparative study of hybrid laser-MIG leading configuration on porosity in aluminum alloy bead-on-plate welding[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5/6/7/8): 2681-2688.

【7】Li M, Zhang W, Hua X M, et al. Investigation of plasma and metal transfer dynamic behavior during fiber laser GMAW-P hybrid welding[J]. Chinese Journal of Lasers, 2017, 44(4): 0402008.
李敏, 张旺, 华学明, 等. 光纤激光与GMAW-P复合焊接等离子体及熔滴过渡动态特征研究[J]. 中国激光, 2017, 44(4): 0402008.

【8】Zhang Y L, Liu J, Shi Y, et al. Study on the influence of different laser-MIG arc hybrid welding methods on the welding quality of aluminum alloy[J]. Applied Laser, 2017, 37(2): 229-233.
张亚亮, 刘佳, 石岩, 等. 激光-电弧复合焊不同引导方式对其焊接成形质量的影响研究[J]. 应用激光, 2017, 37(2): 229-233.

【9】Gao Z M, Jiang P, Wang C M, et al. Study on droplet transfer and weld quality in laser-MIG hybrid welding of 316L stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(1/2/3/4): 483-493.

【10】Wang L, Li X W, Gao M, et al. Stabilization mechanism and weld morphological features of fiber laser-arc hybrid welding of pure copper[J]. Journal of Manufacturing Processes, 2017, 27: 207-213.

【11】Liu F D, Zhang H, Du S F, et al. Influence of laser power on arc and droplet behaviors in droplets on CO2 laser-MAG arc hybrid welding[J]. Journal of Mechanical Engineering, 2013, 49(4): 75-82.
刘凤德, 张宏, 杜劭峰, 等. 激光功率对CO2激光-MAG电弧复合焊电弧与熔滴行为的影响[J]. 机械工程学报, 2013, 49(4): 75-82.

【12】Liu S Y, Zhang H, Shi Y, et al. Effects of process parameters on droplet transfer and bead shape in CO2-MAG hybrid welding[J]. Chinese Journal of Lasers, 2010, 37(12): 3172-3179.
刘双宇, 张宏, 石岩, 等. CO2激光-MAG电弧复合焊接工艺参数对熔滴过渡特征和焊缝形貌的影响[J]. 中国激光, 2010, 37(12): 3172-3179.

【13】He S, Chen H, Chen Y, et al. Effects of laser power on droplet transfer behaviour in laser-MAG hybrid welding[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021408.
何双, 陈辉, 陈勇, 等. 激光功率对激光-MAG复合焊熔滴过渡行为的影响[J]. 激光与光电子学进展, 2018, 55(2): 021408.

【14】Hu L H, Huang J, Wu Y X, et al. Study on coupling mechanism and metal transfer in laser double-wire MIG arc hybrid welding [J]. Chinese Journal of Lasers, 2016, 43(6): 0602005.
胡连海, 黄坚, 吴毅雄, 等. 激光-双MIG电弧复合焊耦合机制及熔滴过渡研究[J]. 中国激光, 2016, 43(6): 0602005.

【15】Cui L, He D Y, Li X Y,et al. Effects of welding direction on weld shape of fiber laser-MIG hybrid welded titanium alloys[J]. Chinese Journal of Lasers, 2011, 38(1): 0103002.
崔丽, 贺定勇, 李晓延, 等. 焊接方向对光纤激光-MIG复合焊接钛合金焊缝成形的影响[J]. 中国激光, 2011, 38(1): 0103002.

【16】Zhang W, Hua X M, Liao W, et al. The effect of the welding direction on the plasma and metal transfer behavior of CO2 laser+GMAW-P hybrid welding processes[J]. Optics and Lasers in Engineering, 2014, 58: 102-108.

【17】Yan J. Study on the process characteristics, metallurgical defects and joint properties during fiber laser-arc welding of high strength aluminum alloys[D]. Wuhan: Huazhong University of Science and Technology, 2011.
严军. 光纤激光-电弧复合焊接高强铝合金工艺、缺陷产生与质量控制[D]. 武汉: 华中科技大学, 2011.

【18】Xue C, Zhang H, Yang R H. Effects of the arc energy on droplet transfer and bead shape in Nd∶YAG-MAG hybrid welding [J]. Applied Laser, 2015, 35(3): 344-350.
薛川, 张宏, 杨日辉. Nd∶YAG激光-MAG电弧复合焊电弧能量对熔滴过渡特征和焊缝形貌的影响[J]. 应用激光, 2015, 35(3): 344-350.

【19】Liu S Y, Li Y Q, Liu F D, et al. Effects of relative positioning of energy sources on weld integrity for hybrid laser arc welding[J]. Optics and Lasers in Engineering, 2016, 81: 87-96.

【20】Gao M, Xiong Z, Zeng X Y, et al. Experimental study on critical speed of laser-arc hybrid welding [J]. Chinese Journal of Lasers, 2009, 36(9): 2438-2442.
高明, 熊征, 曾晓雁, 等. 激光-电弧复合焊接临界速度规律研究[J]. 中国激光, 2009, 36(9): 2438-2442.

【21】Casalino G, Mortello M, Leo P, et al. Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy[J]. Materials & Design, 2014, 61: 191-198.

引用该论文

Gu Siyuan,Liu Zhengjun,Zhang Peilei,Yu Zhishui,Ye Xin,Gu Yong. Appearances and Formation Mechanism of Welds in High-Strength Steels by High Speed Laser-Arc Hybrid Welding[J]. Chinese Journal of Lasers, 2018, 45(12): 1202007

顾思远,刘政君,张培磊,于治水,叶欣,顾勇. 高速激光电弧复合焊接高强钢焊缝的形貌及成形机理[J]. 中国激光, 2018, 45(12): 1202007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF