首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1201006--1)

激光辐照PA2200材料3D打印件的表面浸润性

Surface Wettability of PA2200 3D Printing Parts by Laser Irradiation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过248 nm KrF准分子激光辐照,可以快速地制备PA2200材料三维(3D)打印件亲水性表面,打印件表面接触角从120°减小至70°,且辐照后打印件相结构未发生变化。通过X射线衍射仪、拉曼光谱仪、扫描电子显微镜和X射线光电子能谱仪等表征手段,进行打印件的表面形貌、微观结构、极性官能团种类和数量的变化分析及Cassie-Baxter模型分析,结果表明KrF准分子激光辐照PA2200材料3D打印件可以使打印件表面变得光滑,同时可以产生CO双键亲水性基团,改善并调控打印件表面浸润性。

Abstract

The hydrophilic surfaces of PA2200 three-dimensional (3D) printing parts are prepared quickly through 248 nm KrF excimer laser irradiation, whose contact angles decrease from 121° to 70° and phase structures do not change after irradiation. With the calibration tools of X-ray diffractometer, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy and so on, the surface morphologies and microstructures of printing parts, number and types of polar functional groups are analyzed. The Cassie-Baxter model is also studied. The experimental results show that KrF excimer laser irradiation can not only make PA2200 3D printing part surfaces smooth, but also simultaneously generate CO double hydrophilic groups, and thus the surface wettability of PA2200 3D printing parts are improved and controlled.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201845.1201006

所属栏目:激光器件与激光物理

基金项目:北京市自然科学基金(3184043)

收稿日期:2018-07-10

修改稿日期:2018-08-02

网络出版日期:2018-08-21

作者单位    点击查看

曾勇:北京工业大学激光工程研究院, 北京 100124北京市数字化医疗3D打印工程技术研究中心, 北京 100124
魏小波:北京工业大学激光工程研究院, 北京 100124北京市数字化医疗3D打印工程技术研究中心, 北京 100124
蒋毅坚:北京工业大学激光工程研究院, 北京 100124北京市数字化医疗3D打印工程技术研究中心, 北京 100124

联系人作者:蒋毅坚(yjjiang@bjut.edu.cn)

【1】Schmid M, Kleijnen R, Vetterli M, et al. Influence of the origin of polyamide 12 powder on the laser sintering process and laser sintered parts[J]. Applied Sciences, 2017, 7(5): 462.

【2】Dadbakhsh S, Verbelen L, Verkinderen O, et al. Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts[J]. European Polymer Journal, 2017, 92: 250-262.

【3】Li Z H, Zhu F, Xu H Y, et al. Effect of powder recycling on hardness and impact toughness of polyamide formed by selective laser sintering[J]. Chinese Journal of Lasers, 2018, 45(5): 0502010.
黎振华, 朱飞, 徐慧燕, 等. 粉末回用对选择性激光烧结聚酰胺硬度和冲击韧性的影响[J]. 中国激光, 2018, 45(5): 0502010.

【4】Brzeziński M, Bury K, Dbrowski L, et al. The new 3D printed left atrial appendage closure with a novel holdfast device: a pre-clinical feasibility animal study[J]. PLoS One, 2016, 11(5): e0154559.

【5】Karaca E, Hockenberger A S, Biomed J. Analysis of the fracture morphology of polyamide, polyester, polypropylene, and silk sutures before and after implantation in vivo[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008, 87(2): 580-589.

【6】Makropoulou M, Serafetinides A A, Skordoulis C D. Picosecond and subpicosecond laser ablation of polymers[J]. Proceedings of SPIE, 1996, 3052: 333-339.

【7】Leong K F, Chua C K, Gui W S, et al. Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering[J]. The International Journal of Advanced Manufacturing Technology, 2006, 31(5/6): 483-489.

【8】Mao C, Zhao W B, Zhu C H, et al. In vitro studies of platelet adhesion on UV radiation-treated nylon surface[J]. Carbohydrate Polymers, 2005, 59(1): 19-25.

【9】Abdal-Hay A, Oh Y S, Yousef A, et al. In vitro deposition of Ca-P nanoparticles on air jet spinning nylon 6 nanofibers scaffold for bone tissue engineering[J]. Applied Surface Science, 2014, 307: 69-76.

【10】Fu R K Y, Cheung I T L, Mei Y F, et al. Surface modification of polymeric materials by plasma immersion ion implantation[J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 237(1/2): 417-421.

【11】Wu D H, Liu X S, Yu S C, et al. Modification of aromatic polyamide thin-film composite reverse osmosis membranes by surface coating of thermo-responsive copolymers P(NIPAM-co-Am). I: Preparation and characterization[J]. Journal of Membrane Science, 2010, 352(1/2): 76-85.

【12】Chen J T, Chen W L, Fan P W, et al. Effect of thermal annealing on the surface properties of electrospun polymer fibers[J]. Macromolecular Rapid Communications, 2014, 35(3): 360-366.

【13】Waugh D G, Lawrence J. Wettability and osteoblast cell response modulation through UV laser processing of nylon 6, 6[J]. Applied Surface Science, 2011, 257(21): 8798-8812.

【14】Waugh D G, Lawrence J, Shukla P. Modulating the wettability characteristics and bioactivity of polymeric materials using laser surface treatment[J]. Journal of Laser Applications, 2016, 28(2): 022502.

【15】Salmoria G V, Paggi R A, Lago A, et al. Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering[J]. Polymer Testing, 2011, 30(6): 611-615.

【16】van Hooreweder B, Moens D, Boonen R, et al. On the difference in material structure and fatigue properties of nylon specimens produced by injection molding and selective laser sintering[J]. Polymer Testing, 2013, 32(5): 972-981.

【17】Androsch R, Stolp M, Radusch H J. Simultaneous X-ray diffraction and differential thermal analysis of polymers[J]. Thermochimica Acta, 1996, 271: 1-8.

【18】Behler K, Havel M, Gogotsi Y. New solvent for polyamides and its application to the electrospinning of polyamides 11 and 12[J]. Polymer, 2007, 48(22): 6617-6621.

【19】Versavaud S, Régnier G, Gouadec G, et al. Influence of injection molding on the electrical properties of polyamide 12 filled with multi-walled carbon nanotubes[J].Polymer, 2014, 55(26): 6811-6818.

【20】Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.

【21】Cassie A B D. Contact angles[J]. Discussions of the Faraday Society, 1948, 3: 11-16.

【22】Long J Y, Fan P X, Gong D W, et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 2016, 43(8): 0800001.
龙江游, 范培迅, 龚鼎为, 等. 超快激光制备具有特殊浸润性的仿生表面[J]. 中国激光, 2016, 43(8): 0800001.

【23】He L N, Chen J, Farson D F, et al. Wettability modification of electrospun poly (-caprolactone) fibers by femtosecond laser irradiation in different gas atmospheres[J]. Applied Surface Science, 2011, 257(8): 3547-3553.

【24】Jing W, Hui C, Qiong W, et al. Surface modification of carbon fibers and the selective laser sintering of modified carbon fiber/nylon 12 composite powder[J]. Materials & Design, 2017, 116: 253-260.

引用该论文

Zeng Yong,Wei Xiaobo,Jiang Yijian. Surface Wettability of PA2200 3D Printing Parts by Laser Irradiation[J]. Chinese Journal of Lasers, 2018, 45(12): 1201006

曾勇,魏小波,蒋毅坚. 激光辐照PA2200材料3D打印件的表面浸润性[J]. 中国激光, 2018, 45(12): 1201006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF