首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1201007--1)

车载激光捷联惯导系统初始对准可观测性分析

Observability Analysis of Vehicle-Based-Laser Strapdown Inertial Navigation System Initial Alignment

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对里程计辅助的车载激光捷联惯导系统(SINS)的动基座初始对准问题进行了可观测性分析。首先,考虑里程计刻度系数误差、惯性测量单元零偏、SINS安装误差角等系统误差项建立了系统方程。然后,从系统方程出发,将系统可观测性问题转化为判断系统状态量是否存在唯一解的问题,利用全局可观测性分析方法对系统状态进行了可观测性分析,并给出了一种系统可观测的充分条件。最后,根据可观测性分析结论设计了初始对准算法及在轨激励方式。通过扩展卡尔曼滤波器对里程计辅助的车载激光SINS初始对准进行了计算机仿真,仿真结果验证了理论分析结果的正确性。

Abstract

The observability analysis of the initial alignment problem of the vehicle-based-laser strapdown inertial navigation system (SINS) aided by odometer is carried out. First, the system equation is established by considering the system error items including the odometer scale factor error, inertial measurement unit zero bias, SINS misalignment error angle, etc. Then, starting from system equation, the system observability problem is transformed to the determination of whether there is a unique solution to the state variables of the system. The observability analysis of the system state is conducted by the global observability analysis method, and requirements for maneuvering is given to ensure that the system is observable. Finally, the initial alignment algorithm method and on-track incentive mode are designed according to the results of observable analysis. The simulation of odometer aided laser SINS in-motion initial alignment is conducted by extended Kalman filter, and the simulation results verify the validity of the theoretical analysis.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:U666.1

DOI:10.3788/cjl201845.1201007

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金(61703123)、黑龙江省自然科学基金(F2016027)

收稿日期:2018-07-24

修改稿日期:2018-08-16

网络出版日期:2018-08-23

作者单位    点击查看

高亢:哈尔滨工业大学空间控制与惯性技术研究中心, 黑龙江 哈尔滨 150080
任顺清:哈尔滨工业大学空间控制与惯性技术研究中心, 黑龙江 哈尔滨 150080
陈希军:哈尔滨工业大学空间控制与惯性技术研究中心, 黑龙江 哈尔滨 150080
王振桓:哈尔滨工业大学空间控制与惯性技术研究中心, 黑龙江 哈尔滨 150080
李巍:哈尔滨理工大学自动化学院, 黑龙江 哈尔滨 150080

联系人作者:高亢(condi_gk@163.com); 任顺清(renshunqing@hit.edu.cn);

【1】Titterton D, Weston J. Strapdown inertial navigation technology[M]. UK: The Institution of Engineering and Technology, Michael Faraday House, 2004.

【2】Jiang J B, Ma J J, Liu J N. Effect of refractive index inhomogeneity on backscattering of lasergyros[J]. Laser & Optoelectronics Progress, 2016, 53(6): 061402.
蒋军彪, 马家君, 刘建宁. 折射率非均匀性对激光陀螺背向散射的影响分析[J]. 激光与光电子学进展, 2016, 53(6): 061402.

【3】Ma Y H, Yu W D, Quan B X, et al. Influence of path length control mirror on dynamic stability of ring laser gyro[J]. Chinese Journal of Lasers, 2017, 44(6): 0601001.
马仰华, 于文东, 权冰心, 等. 腔长控制镜对激光陀螺动态特性的影响[J]. 中国激光, 2017, 44(6): 0601001.

【4】Duan R, Zhang X H, Zhu F. Adaptive federated filter for multi-sources information fusion in integrated navigation system[J]. Systems Engineering and Electronics, 2018, 40(2): 267-272.
段睿, 张小红, 朱锋. 多源信息融合的组合导航自适应联邦滤波算法[J]. 系统工程与电子技术, 2018, 40(2): 267-272.

【5】Yao Z, Zhang H P. Performance analysis on vehicle GNSS/INS integrated navigation system aided by odometer[J]. Journal of Geodesy and Geodynamics, 2018, 38(2): 206-210.
姚卓, 章红平. 里程计辅助车载GNSS/INS组合导航性能分析[J]. 大地测量与地球动力学, 2018, 38(2): 206-210.

【6】Goshen-Meskin D, Bar-Itzhack I Y. Observability analysis of piece-wise constant systems. I. Theory[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4): 1056-1067.

【7】Goshen-Meskin D, Bar-Itzhack I Y. Observability analysis of piece-wise constant systems. II. Application to inertial navigation in-flight alignment (military applications)[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4): 1068-1075.

【8】Wang Q, Gao C F, Ying Z H, et al. Observability analysis of fixed position initial alignment of strapdown inertial navigation system[J]. Chinese Journal of Lasers, 2018, 45(1): 0101004.
王琦, 高春峰, 应智慧, 等. 捷联惯导系统单位置初始对准可观测性分析[J]. 中国激光, 2018, 45(1): 0101004.

【9】Zhou W J, Sun L. Reduced-dimension model of SINS/CNS based on observability analysis[J]. Computer Measurement& Control, 2017, 25(4): 143-146.
周伟江, 孙龙. 基于可观测性分析的SINS/CNS降维设计[J]. 计算机测量与控制, 2017, 25(4): 143-146.

【10】Huang S, Cai H, Ding Z J. Observability analysis for transfer alignment of inertial navigation system on moving base[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11): 2548-2554.
黄帅, 蔡洪, 丁智坚. 惯性导航系统动基座传递对准可观测性分析[J]. 北京航空航天大学学报, 2016, 42(11): 2548-2554.

【11】Wu Y X, Zhang H L, Wu M P, et al. Observability of strapdown INS alignment: a global perspective[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 78-102.

【12】Wu Y X, Wu M P, Hu X P, et al. Self-calibration for land navigation using inertial sensors and odometer: observability analysis[C]∥AIAA Guidance, Navigation, and Control Conference, 2009.

【13】Pan X F, Wu Y X. Underwater doppler navigation with self-calibration[J]. Journal of Navigation, 2016, 69(2): 295-312.

【14】Tang Y G, Wu Y X, Wu M P,et al. INS/GPS integration: global observability analysis[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3): 1129-1142.

【15】Chen C T. Linear system theory and design[M]. Oxford: Oxford University Press, 1998.

【16】Sontag E D. Mathematical control theory[M]. New York: Springer, 1998.

【17】Black H D. A passive system for determining the attitude of a satellite[J]. AIAA Journal, 1964, 2(7): 1350-1351.

引用该论文

Gao Kang,Ren Shunqing,Chen Xijun,Wang Zhenhuan,Li Wei. Observability Analysis of Vehicle-Based-Laser Strapdown Inertial Navigation System Initial Alignment[J]. Chinese Journal of Lasers, 2018, 45(12): 1201007

高亢,任顺清,陈希军,王振桓,李巍. 车载激光捷联惯导系统初始对准可观测性分析[J]. 中国激光, 2018, 45(12): 1201007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF