首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1016002--1)

混合阳离子钙钛矿的高效率绿色发光器件

Highly Efficient Green-Emitting Devices Based on Mixed-Cation Perovskites

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

有机-无机金属卤化物钙钛矿作为新一代半导体材料,具有可溶液加工性、良好结晶性和高载流子迁移率等特性,受到广泛关注[1]。在过去的几年中,钙钛矿太阳能电池的功率转换效率迅速提高,已达到或超过多晶硅太阳能电池的功率转换效率[2-3]。基于钙钛矿材料的发光、光电探测和激光器件也在迅猛发展[4-6]。Tan等[4]采用溶液加工方法分别制备了以甲胺碘氯铅(MAPbI3-xClx)和甲胺溴铅(MAPbBr3)作为发光层的近红外和绿光器件,器件的最大外量子效率(EQE)分别为0.76%和0.1%。钙钛矿薄膜制备方法、器件结构优化及界面修饰等方面的研究工作极大地促进了器件发光效率的提高。目前,绿光、红光和近红外钙钛矿器件的EQE已超过20%,接近有机和量子点发光器件的EQE[7-8]。 阳离子混杂方法能够有效提高钙钛矿材料的光电特性和稳定性,已被广泛应用于钙钛矿光电器件的研究[9]。Gholipour等[10]合成了包含甲基胺(MA+)和乙基胺(EA+)的混合阳离子钙钛矿材料,相关太阳能电池的开路电压可达1.6 V。Si等[11]研究后发现MA∶Cs混合阳离子钙钛矿发光器件的EQE远高于MAPbBr3器件,并认为这主要得益于钙钛矿薄膜表面形貌和辐射复合效率的改善。目前混合阳离子钙钛矿发光材料的研究工作主要集中在引入Cs[12]、Rb[13-14]和K[15]等碱金属阳离子方面,而包含混合有机阳离子的钙钛矿发光材料还有待进一步研究。最近,Mei等[16]合成了钙钛矿纳米材料FAxMA(1-x)PbBr3[FA=CH(NH2)2,甲脒离子],发光器件的最大EQE和亮度分别为3.36%和2020 cd·m-2。

Abstract

Organic-inorganic lead halide perovskites are intensively studied for their large potential in low-cost and high-resolution light-emitting devices due to the advantages of solution-processability, good color purity, and facile emission wavelength tunability. We study the perovskite materials containing a mixture of methylammonium (MA +) and ethylammonium cations (EA +), which show the cation-ratio dependent emission wavelength. Introduction of EA + cations increases the photoluminescence quantum yield and photo-stability simultaneously, reduces the density of defect states significantly. Related green-emitting devices show a maximum external quantum efficiency and power efficiency of 7.7% and 25.1 lm·W -1, which are 1.9 and 1.7 times as those of the MAPbBr3-based analogs, respectively, along with improved operational stability.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1016002

所属栏目:材料

基金项目:国家自然科学基金;

收稿日期:2019-04-28

修改稿日期:2019-06-25

网络出版日期:2019-10-01

作者单位    点击查看

杨晓晖:西南大学物理科学与技术学院, 重庆 400715
王琦:西南大学物理科学与技术学院, 重庆 400715
肖择武:西南大学物理科学与技术学院, 重庆 400715
吴小龑:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
任杰:西南大学物理科学与技术学院, 重庆 400715
吴燕婷:西南大学物理科学与技术学院, 重庆 400715

联系人作者:杨晓晖(xhyang@swu.edu.cn)

备注:国家自然科学基金;

【1】Stranks S D and Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology. 10(5), 391-402(2015).

【2】Kojima A, Teshima K, Shirai Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society. 131(17), 6050-6051(2009).

【3】Grancini G and Nazeeruddin M K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Reviews Materials. 4(1), 4-22(2019).

【4】Tan Z K, Moghaddam R S, Lai M L et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology. 9(9), 687-692(2014).

【5】Dong R, Fang Y J, Chae J et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Advanced Materials. 27(11), 1912-1918(2015).

【6】Zhu H M, Fu Y P, Meng F et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials. 14(6), 636-642(2015).

【7】Cao Y, Wang N N, Tian H et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature. 562(7726), 249-253(2018).

【8】Lin K B, Xing J, Quan L N et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature. 562(7726), 245-248(2018).

【9】Ono L K. Juarez-Perez E J, Qi Y B. Progress on perovskite materials and solar cells with mixed cations and halide anions. ACS Applied Materials & Interfaces. 9(36), 30197-30246(2017).

【10】Gholipour S and Ali A M. Correa-Baena J P, et al. Globularity-selected large molecules for a new generation of multication perovskites. Advanced Materials. 29(38), (2017).

【11】Si J J, Liu Y, Wang N N et al. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Research. 10(4), 1329-1335(2017).

【12】Cho H, Kim J S, Wolf C et al. High-efficiency polycrystalline perovskite light-emitting diodes based on mixed cations. ACS Nano. 12(3), 2883-2892(2018).

【13】Shi Y F, Xi J, Lei T et al. Rubidium doping for enhanced performance of highly efficient formamidinium-based perovskite light-emitting diodes. ACS Applied Materials & Interfaces. 10(11), 9849-9857(2018).

【14】Kanwat A, Moyen E, Cho S et al. Rubidium as an alternative cation for efficient perovskite light-emitting diodes. ACS Applied Materials & Interfaces. 10(19), 16852-16860(2018).

【15】Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature. 555(7697), 497-501(2018).

【16】Mei G D, Zhang Y N, Xu B et al. Bright and efficient light-emitting diodes based on perovskite quantum dots with formamidine-methylamine hybrid cations. Journal of Physics D: Applied Physics. 51(45), (2018).

【17】Peng X F, Wu X Y, Ji X X et al. Modified conducting polymer hole injection layer for high-efficiency perovskite light-emitting devices: enhanced hole injection and reduced luminescence quenching. The Journal of Physical Chemistry Letters. 8(19), 4691-4697(2017).

【18】Xiao M D, Huang F Z, Huang W C et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie International Edition. 53(37), 9898-9903(2014).

【19】Greenham N C. Samuel I D W, Hayes G R, et al. Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chemical Physics Letters. 241(1/2), 89-96(1995).

【20】Shi D, Adinolfi V, Comin R et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science. 347(6221), 519-522(2015).

【21】Mittal M, Jana A, Sarkar S et al. Size of the organic cation tunes the band gap of colloidal organolead bromide perovskite nanocrystals. The Journal of Physical Chemistry Letters. 7(16), 3270-3277(2016).

【22】Li Z, Yang M J, Park J S et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials. 28(1), 284-292(2016).

【23】Kim Y H, Cho H, Heo J H et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Advanced Materials. 27(7), 1248-1254(2015).

【24】Xiao Z G, Kerner R A, Zhao L F et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nature Photonics. 11(2), 108-115(2017).

【25】Chen J Z and Park N G. Causes and solutions of recombination in perovskite solar cells. Advanced Materials. 1803019, (2018).

【26】Leijtens T, Bush K, Cheacharoen R et al. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. Journal of Materials Chemistry A. 5(23), 11483-11500(2017).

【27】Chen S, Wen X M, Sheng R et al. Mobile ion induced slow carrier dynamics in Organic-Inorganic perovskite CH3NH3PbBr3. ACS Applied Materials & Interfaces. 8(8), 5351-5357(2016).

【28】Ren J, Ji X X, Wang Q et al. Light emitting devices based on polymer: organometallic halide perovskite composites. Laser & Optoelectronics Progress. 56(3), (2019).
任杰, 吉霞霞, 王琦 等. 有机金属卤化物钙钛矿复合发光器件. 激光与光电子学进展. 56(3), (2019).

引用该论文

Xiaohui Yang,Qi Wang,Zewu Xiao,Xiaoyan Wu,Jie Ren,Yanting Wu. Highly Efficient Green-Emitting Devices Based on Mixed-Cation Perovskites[J]. Acta Optica Sinica, 2019, 39(10): 1016002

杨晓晖,王琦,肖择武,吴小龑,任杰,吴燕婷. 混合阳离子钙钛矿的高效率绿色发光器件[J]. 光学学报, 2019, 39(10): 1016002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF