首页 > 论文 > Photonics Research > 7卷 > 1期(pp:19-27)

Generation and measurement of arbitrary four-dimensional spatial entanglement between photons in multicore fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

High-dimensional entanglement is a valuable resource for secure and efficient quantum information processing. A major challenge for practical use of multidimensional quantum systems is the establishment of controls over arbitrary superposition states in realistic conditions. This work demonstrates spatially entangled photon pairs propagating through two separate four-core optical fibers with the amplitudes and phases of the superposition being independently controllable. Using quantum state analyzers that can detect arbitrary multicore superposition states, Bell-type CGLMP inequalities in two, three, and four dimensions are directly tested. Enhanced violation of the inequality by slight nonmaximality of entanglement is also demonstrated.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.7.000019

所属栏目:Quantum Optics

基金项目:R&D Convergence Program of the NST (CAP-15-08-KRISS); KRISS Project (GP2018-0017-04).

收稿日期:2018-10-02

录用日期:2018-10-29

网络出版日期:2018-11-01

作者单位    点击查看

Hee Jung Lee:Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South KoreaCurrent address: Agency for Defense Development, Daejeon 34186, South Korea
Hee Su Park:Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea

联系人作者:Hee Su Park(hspark@kriss.re.kr)

【1】N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88 , 127902 (2002).

【2】S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. S. Ribeiro, “Quantum key distribution with higher-order alphabets using spatially encoded qudits,” Phys. Rev. Lett. 96 , 090501 (2006).

【3】S. Etcheverry, G. Ca?as, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, and G. Lima, “Quantum key distribution session with 16-dimensional photonic states,” Sci. Rep. 3 , 2316 (2013).

【4】F. Bouchard, R. Fickler, R. W. Boyd, and E. Karimi, “High-dimensional quantum cloning and applications to quantum hacking,” Sci. Adv. 3 , e1601915 (2017).

【5】N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3 , e1701491 (2017).

【6】D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequality for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88 , 040404 (2002).

【7】X.-M. Hu, B.-H. Liu, Y. Guo, G.-Y. Xiang, Y.-F. Huang, C.-F. Li, G.-C. Guo, M. Kleinmann, T. Vértesi, and A. Cabello, “Observation of stronger-than-binary correlations with entangled photonic qutrits,” Phys. Rev. Lett. 120 , 180402 (2018).

【8】L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94 , 100501 (2005).

【9】M. N. O’Sullivan-Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits,” Phys. Rev. Lett. 94 , 220501 (2005).

【10】A. Rossi, G. Vallone, A. Chiuri, F. D. Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102 , 153902 (2009).

【11】H. J. Lee, S.-K. Choi, and H. S. Park, “Experimental demonstration of four-dimensional photonic spatial entanglement between multicore optical fibres,” Sci. Rep. 7 , 4302 (2017).

【12】J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Man?inska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenl?we, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360 , 285–291 (2018).

【13】A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412 , 313–316 (2001).

【14】A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities,” Nat. Phys. 7 , 677–680 (2011).

【15】M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photon: new quantum perspectives in high dimensions,” Light Sci. Appl. 7 , 17146 (2018).

【16】F. Bouchard, K. Heshami, D. England, R. Fickler, R. W. Boyd, B.-G. Englert, L. L. Sánchez-Soto, and E. Karimi, “Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons,” arxiv:1802.05773v2 (2018).

【17】A. Martin, T. Guerreiro, A. Tiranov, S. Designolle, F. Fr?wis, N. Brunner, M. Huber, and N. Gisin, “Quantifying photonic high-dimensional entanglement,” Phys. Rev. Lett. 118 , 110501 (2017).

【18】T. Ikuta, and H. Takesue, “Four-dimensional entanglement distribution over 100?km,” Sci. Rep. 8 , 817 (2018).

【19】S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete tunable color entanglement,” Phys. Rev. Lett. 103 , 253601 (2009).

【20】M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Aza?a, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546 , 622–626 (2017).

【21】G. Lima, A. Vargas, L. Neves, R. Guzmán, and C. Saavedra, “Manipulating spatial qudit states with programmable optical devices,” Opt. Express 17 , 10688–10696 (2009).

【22】Q. P. Stefano, L. Rebón, S. Ledesma, and C. Iemmi, “Determination of any pure spatial qudits from a minimum number of measurements by phase-stepping interferometry,” Phys. Rev. A 96 , 062328 (2017).

【23】M. A. Solís-Prosser, M. F. Fernandes, O. Jiménez, A. Delgado, and L. Neves, “Experimental minimum-error quantum-state discrimination in high dimensions,” Phys. Rev. Lett. 118 , 100501 (2017).

【24】Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenl?we, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3 , 25 (2017).

【25】G. Ca?as, N. Vera, J. Cari?e, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, F. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over 0.3??km of multicore telecommunication optical fibers,” Phys. Rev. A 96 , 022317 (2017).

【26】J. Romero, D. Giovannini, M. G. McLaren, E. J. Galvez, A. Forbes, and M. J. Padgett, “Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam,” J. Opt. 14 , 085401 (2012).

【27】E. V. Kovlakov, I. B. Bobrov, S. S. Straupe, and S. P. Kulik, “Spatial bell-state generation without transverse mode subspace postselection,” Phys. Rev. Lett. 118 , 030503 (2017).

【28】H. J. Lee, E. Lee, and H. S. Park, “Azimuth-rotated splicings of a four-core optical fiber for inter-core group delay compensation,” IEEE Photon. Technol. Lett. 29 , 2250–2253 (2017).

【29】D. Barrera, I. Gasulla, and S. Sales, “Multipoint two-dimensional curvature optical fiber sensor based on a nontwisted homogeneous four-core fiber,” J. Lightwave Technol. 33 , 2445–2450 (2015).

【30】A. Acín, T. Durt, N. Gisin, and J. I. Latorre, “Quantum nonlocality in two three-level systems,” Phys. Rev. A 65 , 052325 (2002).

【31】A. Acín, R. Gill, and N. Gisin, “Optimal bell tests do not require maximally entangled states,” Phys. Rev. Lett. 95 , 210402 (2005).

【32】J.-L. Chen, C. Wu, L. C. Kwek, C. H. Oh, and M.-L. Ge, “Violating bell inequalities maximally for two d-dimensional systems,” Phys. Rev. A 74 , 032106 (2006).

【33】C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88 , 032322 (2013).

【34】T. Ikuta, and H. Takesue, “Enhanced violation of the Collins-Gisin-Linden-Massar-Popescu inequality with optimized time-bin-entangled ququarts,” Phys. Rev. A 93 , 022307 (2016).

【35】G. M. Fernandes, N. J. Muga, A. M. Rocha, and A. N. Pinto, “Switching in multicore fibers using flexural acoustic waves,” Opt. Express 23 , 26313–26325 (2015).

【36】Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2 , e1501165 (2016).

引用该论文

Hee Jung Lee and Hee Su Park, "Generation and measurement of arbitrary four-dimensional spatial entanglement between photons in multicore fibers," Photonics Research 7(1), 19-27 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF