首页 > 论文 > 激光与光电子学进展 > 56卷 > 1期(pp:10001--1)

钙钛矿光电探测器的研究进展

Research Progress in Perovskite Photodetectors

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

钙钛矿材料因其可调带隙工程、高吸收系数、长程平衡载流子传输距离等光学、电学特性而在光电探测领域表现出光明的应用前景。钙钛矿晶体包含了微晶/多晶薄膜、块体单晶和低维纳米单晶等不同形貌。依次介绍了基于不同形貌钙钛矿晶体制成的光电导型、光伏型、晶体管型与光电倍增型光电探测器的发展历史及研究现状, 展示了不同类型器件在光谱响应率、探测率及响应速度等性能参数方面所表现出的不同特征。总结了钙钛矿光电探测器在柔性、窄带探测、自驱动及阵列化等特殊性能方面所取得的研究进展, 并对钙钛矿光电探测器的发展前景进行了展望。

Abstract

Perovskite is a promising candidate for photodetector applications owing to its outstanding optical and electrical characteristics, such as a tunable bandgap, a high absorption co-efficiency, and a long and balanced carrier diffusion length. Perovskite crystals are diverse in their morphologies, which include micro and nano crystalline films, single crystalline bulks, and single crystalline nanocrystals. In this study, the photodetectors composed of perovskite crystals with different morphologies based on the principles of photoconductive, photovoltaic, field effect transistor, and photomultiplication are reviewed, which reveal different characteristics in terms of responsivity, detectivity, and response speed. The research progress of perovskite photodetectors is summarized in each of the aspects of flexibility, narrow band response, self-powered photodetection, and patterned array. A future prospect of perovskite photodetectors is also discussed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O472

DOI:10.3788/lop56.010001

所属栏目:综述

基金项目:国家自然科学基金(61775156, 61475109, 61605136)、山西省自然科学基金优秀青年科学基金(201701D211002)

收稿日期:2018-05-18

修改稿日期:2018-07-08

网络出版日期:2018-07-18

作者单位    点击查看

刘艳珍:太原理工大学物理与光电工程学院新型传感与智能控制教育部重点实验室, 山西 太原 310024
李国辉:太原理工大学物理与光电工程学院新型传感与智能控制教育部重点实验室, 山西 太原 310024
崔艳霞:太原理工大学物理与光电工程学院新型传感与智能控制教育部重点实验室, 山西 太原 310024
冀婷:太原理工大学物理与光电工程学院新型传感与智能控制教育部重点实验室, 山西 太原 310024
郝玉英:太原理工大学物理与光电工程学院新型传感与智能控制教育部重点实验室, 山西 太原 310024

联系人作者:崔艳霞(yanxiacui@gmail.com)

【1】Liu W, Ye Z H. Status and trends of foreign infrared photodetectors[J]. Laser & Infrared, 2011, 41(4): 365-370.
刘武, 叶振华. 国外红外光电探测器发展动态[J]. 激光与红外, 2011, 41(4): 365-370.

【2】Jansen-van Vuuren R D, Armin A, Pandey A K, et al. Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802.

【3】Zhou H Y, Li C, Liu Q L, et al. Application of laser annealing in silicon photodetectors[J]. Semiconductor Optoelectronics, 2016, 37(1): 36-40, 49.
周弘毅, 李冲, 刘巧莉, 等. 激光退火在硅基光电探测器中的应用[J]. 半导体光电, 2016, 37(1): 36-40, 49.

【4】Jin L F, Zhang Y T, Wang H Y, et al. Accelerated aging of InGaAs PIN photoelectric detectors[J]. Chinese Journal of Lasers, 2014, 41(10): 1008002.
金露凡, 张雅婷, 王海艳, 等. InGaAs PIN光电探测器的加速老化研究[J]. 中国激光, 2014, 41(10): 1008002.

【5】Wang Y, Zhang R. Photodetector characteristics effect on TDLAS gas detection[J]. Acta Optica Sinica, 2016, 36(2): 0230002.
王燕, 张锐. 光电探测器特性在TDLAS气体检测中的影响[J]. 光学学报, 2016, 36(2): 0230002.

【6】Yan P Q, Meng W D, Wang Y R, et al. Si-APD single-photon detector with high stability based on auto-compensation of temperature drift[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080403.
颜佩琴, 孟文东, 王煜蓉, 等. 基于温漂自动补偿的高稳定性si-APD单光子探测器[J]. 激光与光电子学进展, 2017, 54(8): 080403.

【7】Chen M, Zou Y T, Wu L Z, et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire[J]. Advanced Functional Materials, 2017, 27(23): 1701121.

【8】Xing G, Mathews N, Sun S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347.

【9】Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319.

【10】Nunzi J M. Organic photovoltaic materials and devices[J]. Comptes Rendus Physique, 2002, 3(4): 523-542.

【11】Tian W M, Zhao C Y, Leng J, et al. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates[J]. Journal of the American Chemical Society, 2015, 137(39): 12458-12461.

【12】Hu L L, Mandelis A, Yang Z N, et al. Temperature- and ligand-dependent carrier transport dynamics in photovoltaic PbS colloidal quantum dot thin films using diffusion-wave methods[J]. Solar Energy Materials and Solar Cells, 2017, 164: 135-145.

【13】Li L G, Zhang F, Hao Y Y, et al. High efficiency planar Sn-Pb binary perovskite solar cells: controlled growth of large grains via a one-step solution fabrication process[J]. Journal of Materials Chemistry C, 2017, 5(9): 2360-2367.

【14】Zhang F, Song J, Zhang L X, et al. Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment[J]. Journal of Materials Chemistry a, 2016, 4(22): 8554-8561.

【15】Wu R S, Yang B C, Zhang C J, et al. Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods[J]. The Journal of Physical Chemistry C, 2016, 120(13): 6996-7004.

【16】Chen J N, Zhou S S, Jin S Y, et al. Crystal organometal halide perovskites with promising optoelectronic applications[J]. Journal of Materials Chemistry C, 2016, 4(1): 11-27.

【17】Tian W, Zhou H P, Li L. Hybrid organic-inorganic perovskite photodetectors[J]. Small, 2017, 13(41): 1702107.

【18】Guo H W, Liu R, Wang L R, et al. High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3[J]. Acta Physica Sinica, 2017, 66(3): 030701.
郭宏伟, 刘然, 王玲瑞, 等. 高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究[J]. 物理学报, 2017, 66(3): 030701.

【19】Christians J A, Miranda Herrera P A, Kamat P V. Transformation of the excited state and photovoltaic efficiency ofCH3NH3PbI3 perovskite upon controlled exposure to humidified air[J]. Journal of the American Chemical Society, 2015, 137(4): 1530-1538.

【20】Luan M Y, Liu X Q, Chen F, et al. Recent advances in controllable growth of lead halide perovskite crystals[J]. Journal of Henan University(Natural Science), 2016, 46(3): 276-285.
栾梦雨, 刘晓倩, 陈方, 等. 有机-无机钙钛矿晶体生长调控研究进展[J]. 河南大学学报(自然科学版), 2016, 46(3): 276-285.

【21】Ramasamy P, Lim D H, Kim B, et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications[J]. Chemical Communications, 2016, 52(10): 2067-2070.

【22】Dong D D, Deng H, Hu C, et al. Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices[J]. Nanoscale, 2017, 9(4): 1567-1574.

【23】Bekenstein Y, Koscher B A, Eaton S W, et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies[J]. Journal of the American Chemical Society, 2015, 137(51): 16008-16011.

【24】Fang Y J, Dong Q F, Shao Y C, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 2015, 9(10): 679-686.

【25】Filip M R, Eperon G E, Snaith H J, et al. Steric engineering of metal-halide perovskites with tunable optical band gaps[J]. Nature Communications, 2014, 5: 5757.

【26】Miller E M, Zhao Y X, Mercado C C, et al. Substrate-controlled band positions in CH3NH3PbI3 perovskite films[J]. Physical Chemistry Chemical Physics, 2014, 16(40): 22122-22130.

【27】Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341-344.

【28】Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522.

【29】Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3single crystals[J]. Science, 2015, 347(6225): 967-970.

【30】Lian Z P, Yan Q F, Lv Q, et al. High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal[J]. Scientific Reports, 2015, 5(1): 16563.

【31】Liu Y C, Yang Z, Cui D, et al. Two-inch-sized perovskite CH3NH3PbX3(X = Cl, Br, I) crystals: growth and characterization[J]. Advanced Materials, 2015, 27(35): 5176-5183.

【32】Frost J M, Butler K T, Brivio F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J]. Nano Letters, 2014, 14(5): 2584-2590.

【33】Xiao R, Hou Y S, Fu Y P, et al. Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures[J]. Nano Letters, 2016, 16(12): 7710-7717.

【34】Zhong M Z, Huang L, Deng H X, et al. Flexible photodetectors based on phase dependent PbI2 single crystals[J]. Journal of Materials Chemistry C, 2016, 4(27): 6492-6499.

【35】Veldhuis S A, Boix P P, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 2016, 28(32): 6804-6834.

【36】Qin X, Yao Y F, Dong H L, et al. Perovskite photodetectors based on CH3NH3PbI3Single crystals[J]. Chemistry - An Asian Journal, 2016, 11(19): 2675-2679.

【37】Liu E K, Zhu B S, Luo J S. Semiconductor physics [M]. 4th ed. Beijing: National Defense Industry Press, 2010: 288-292.
刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 4版. 北京: 国防工业出版社, 2010: 288-292.

【38】Guo Y L, Liu C, Tanaka H, et al. Air-stable and solution-processable perovskite photodetectors for solar-blind UV and visible light[J]. The Journal of Physical Chemistry Letters, 2015, 6(3): 535-539.

【39】He M H, Chen Y N, Liu H, et al. Chemical decoration of CH3NH3PbI3 perovskites with graphene oxides for photodetector applications[J]. Chemical Communications, 2015, 51(47): 9659-9661.

【40】Shewmon N T, Yu H, Constantinou I, et al. Formation of perovskite heterostructures by ion exchange[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33273-33279.

【41】Hu X, Zhang X D, Liang L, et al. High-performance flexible broadband photodetector based on organolead halide perovskite[J]. Advanced Functional Materials, 2014, 24(46): 7373-7380.

【42】Cao F R, Tian W, Gu B K, et al. High-performance UV-vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures[J]. Nano Research, 2017, 10(7): 2244-2256.

【43】Tong X W, Kong W Y, Wang Y Y, et al. High-performance red-light photodetector based on lead-free bismuth halide perovskite film[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18977-18985.

【44】Lu J P, Carvalho A, Liu H W, et al. Hybrid bilayer WSe2-CH3NH3PbI3 organolead halide perovskite as a high-performance photodetector[J]. Angewandte Chemie International Edition, 2016, 55(39): 11945-11949.

【45】Teng C J, Xie D, Sun M X, et al. Organic dye-sensitized CH3NH3PbI3 hybrid flexible photodetector with bulk heterojunction architectures[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31289-31294.

【46】Xia H R, Li J, Sun W T, et al. Organohalide lead perovskite based photodetectors with much enhanced performance[J]. Chemical Communications, 2014, 50(89): 13695-13697.

【47】Saidaminov M I, Haque M A, Savoie M, et al. Perovskite photodetectors operating in both narrowband and broadband regimes[J]. Advanced Materials, 2016, 28(37): 8144-8149.

【48】Wang Y, Xia Z G, Du S N, et al. Solution-processed photodetectors based on organic-inorganic hybrid perovskite and nanocrystalline graphite[J]. Nanotechnology, 2016, 27(17): 175201.

【49】Jeong B, Hwang I, Cho S H, et al. Solvent-assisted gel printing for micropatterning thin organic-inorganic hybrid perovskite films[J]. ACS Nano, 2016, 10(9): 9026-9035.

【50】Zhang Y, Du J, Wu X H, et al. Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films[J]. ACS Applied Materials & Interfaces, 2015, 7(39): 21634-21638.

【51】Liu C, Wang K, Du P C, et al. Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters[J]. Nanoscale, 2015, 7(39): 16460-16469.

【52】Liu C, Wang K, Yi C, et al. Ultrasensitive solution-processed perovskite hybrid photodetectors[J]. Journal of Materials Chemistry C, 2015, 3(26): 6600-6606.

【53】Zhao F Y, Xu K, Luo X, et al. Ultrasensitivity broadband photodetectors based on perovskite: research on film crystallization and electrode optimization[J]. Organic Electronics, 2017, 46: 35-43.

【54】Liu Y C, Sun J K, Yang Z, et al. 20 mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors[J]. Advanced Optical Materials, 2016, 4(11): 1829-1837.

【55】Sun Z H, Zeb A, Liu S J, et al. Exploring a lead-free semiconducting hybrid ferroelectric with a zero-dimensional perovskite-like structure[J]. Angewandte Chemie International Edition, 2016, 55(39): 11854-11858.

【56】Lin Q Q, Armin A, Burn P L, et al. Near infrared photodetectors based on sub-gap absorption in organohalide perovskite single crystals[J]. Laser & Photonics Reviews, 2016, 10(6): 1047-1053.

【57】Zhang Y X, Liu Y C, Li Y J, et al. Perovskite CH3NH3Pb(BrxI1-x)3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications[J]. Journal of Materials Chemistry C, 2016, 4(39): 9172-9178.

【58】Fang H J, Li Q, Ding J, et al. A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator[J]. Journal of Materials Chemistry C, 2016, 4(3): 630-636.

【59】Ding J, Fang H J, Lian Z P, et al. A self-powered photodetector based on a CH3NH3PbI3 single crystal with asymmetric electrodes[J]. CrystEngComm, 2016, 18(23): 4405-4411.

【60】Han Q F, Bae S H, Sun P Y, et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties[J]. Advanced Materials, 2016, 28(11): 2253-2258.

【61】Liu Y C, Zhang Y X, Yang Z, et al. Perovskite wafers: thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices [J]. Advanced Materials, 2016, 28(41): 9203-9203.

【62】Wang L, Yuan G D, Duan R F, et al. Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3-yXy) single crystals and photodetector applications[J]. AIP Advances, 2016, 6(4): 045115.

【63】Niu L, Zeng Q S, Shi J, et al. Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal[J]. Advanced Functional Materials, 2016, 26(29): 5263-5270.

【64】Song J Z, Xu L M, Li J H, et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices[J]. Advanced Materials, 2016, 28(24): 4861-4869.

【65】Deng W, Zhang X, Huang L M, et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability[J]. Advanced Materials, 2016, 28(11): 2201-2208.

【66】Zhu P C, Gu S, Shen X P, et al. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices[J]. Nano Letters, 2016, 16(2): 871-876.

【67】Deng H, Yang X K, Dong D D, et al. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability[J]. Nano Letters, 2015, 15(12): 7963-7969.

【68】Hu Q, Wu H, Sun J, et al. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading[J]. Nanoscale, 2016, 8(9): 5350-5357.

【69】Horváth E, Spina M, Szekrényes Z, et al. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization[J]. Nano Letters, 2014, 14(12): 6761-6766.

【70】Gao L, Zeng K, Guo J S, et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity[J]. Nano Letters, 2016, 16(12): 7446-7454.

【71】Deng H, Dong D D, Qiao K K, et al. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices[J]. Nanoscale, 2015, 7(9): 4163-4170.

【72】Deng W, Huang L M, Xu X, et al. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement[J]. Nano Letters, 2017, 17(4): 2482-2489.

【73】Zhang Q, Ha S T, Liu X F, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 2014, 14(10): 5995-6001.

【74】Chen S, Shi G Q. Two-dimensional materials for halide perovskite-based optoelectronic devices[J]. Advanced Materials, 2017, 29(24): 1605448.

【75】Liu X H, Yu D J, Cao F, et al. Low-voltage photodetectors with high responsivity based on solution-processed micrometer-scale all-inorganic perovskite nanoplatelets[J]. Small, 2017, 13(25): 1700364.

【76】Tan Z J, Wu Y, Hong H, et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector[J]. Journal of the American Chemical Society, 2016, 138(51): 16612-16615.

【77】Liu J Y, Xue Y Z, Wang Z Y, et al. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application[J]. ACS Nano, 2016, 10(3): 3536-3542.

【78】Wang G, Li D, Cheng H C, et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics[J]. Science Advances, 2015, 1(9): e1500613.

【79】Wei H M, Zhao X Y, Wei Y, et al. Flash-evaporation printing methodology for perovskite thin films[J]. NPG Asia Materials, 2017, 9(6): e395.

【80】Sutherland B R, Johnston A K, Ip A H, et al. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering[J]. ACS Photonics, 2015, 2(8): 1117-1123.

【81】Chen H W, Sakai N, Jena A K, et al. A switchable high-sensitivity photodetecting and photovoltaic device with perovskite absorber[J]. The Journal of Physical Chemistry Letters, 2015, 6(9): 1773-1779.

【82】Lin Q Q, Armin A, Burn P L, et al. Filterless narrowband visible photodetectors[J]. Nature Photonics, 2015, 9(10): 687-694.

【83】Bao C X, Zhu W D, Yang J, et al. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23868-23875.

【84】Lin Q Q, Armin A, Lyons D M, et al. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging[J]. Advanced Materials, 2015, 27(12): 2060-2064.

【85】Shen L, Fang Y J, Wang D, et al. A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection[J]. Advanced Materials, 2016, 28(48): 10794-10800.

【86】Dou L T, Yang Y, You J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 2014, 5: 5404.

【87】Zhu H L, Cheng J Q, Zhang D, et al. Room-temperature solution-processed NiOx: PbI2 nanocomposite structures for realizing high-performance perovskite photodetectors[J]. ACS Nano, 2016, 10(7): 6808-6815.

【88】Wang W B, Zhao D W, Zhang F J, et al. Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region[J]. Advanced Functional Materials, 2017, 27(42): 1703953.

【89】Bisi O, Campisano S U, Pavesi L. Silicon-based microphotonics: from basics to applications[M]Amsterdam: IOS Press, 1999.

【90】Pierre A, Deckman I, Lechêne P B, et al. High detectivity all-printed organic photodiodes[J]. Advanced Materials, 2015, 27(41): 6411-6417.

【91】Fang Y J, Huang J S. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction[J]. Advanced Materials, 2015, 27(17): 2804-2810.

【92】Sun H X, Lei T, Tian W, et al. Self-powered, flexible, and solution-processable perovskite photodetector based on low-cost carbon cloth[J]. Small, 2017, 13(28): 1701042.

【93】Li L L, Deng Y H, Bao C X, et al. Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response[J]. Advanced Optical Materials, 2017, 5(22): 1700672.

【94】Karak S, Nanjo C, Odaka M, et al. A perovskite based plug and play AC photovoltaic device with ionic liquid induced transient opto-electronic conversion[J]. Journal of Materials Chemistry a, 2016, 4(23): 9019-9028.

【95】Bao C X, Chen Z L, Fang Y J, et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals[J]. Advanced Materials, 2017, 29(39): 1703209.

【96】Wei H T, Fang Y J, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10(5): 333-339.

【97】Rao H S, Li W G, Chen B X, et al. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors[J]. Advanced Materials, 2017, 29(16): 1602639.

【98】Gu L L, Tavakoli M M, Zhang D Q, et al. 3D arrays of 1024 pixel image sensors based on lead halide perovskite nanowires[J]. Advanced Materials, 2016, 28(44): 9713-9721.

【99】Waleed A, Tavakoli M M, Gu L L, et al. Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates[J]. Nano Letters, 2017, 17(1): 523-530.

【100】Li F, Ma C, Wang H, et al. Ambipolar solution-processed hybrid perovskite phototransistors[J]. Nature Communications, 2015, 6(1): 8238.

【101】He B, Li W L, Wang Q, et al. Ultrasensitive all-solution-processed field-effect transistor based perovskite photodetectors with sol-gel SiO2 as the dielectric layer[J]. Journal of Alloys and Compounds, 2017, 717: 150-155.

【102】Li D H, Wu H, Cheng H C, et al. Electronic and ionic transport dynamics in organolead halide perovskites[J]. ACS Nano, 2016, 10(7): 6933-6941.

【103】Kwon K C, Hong K, van Le Q, et al. Inhibition of ion migration for reliable operation of organolead halide perovskite-based metal/semiconductor/metal broadband photodetectors[J]. Advanced Functional Materials, 2016, 26(23): 4213-4222.

【104】Xu J X, Buin A, Ip A H, et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nature Communications, 2015, 6: 7081.

【105】Domanski K, Tress W, Moehl T, et al. Working principles of perovskite photodetectors: analyzing the interplay between photoconductivity and voltage-driven energy-level alignment[J]. Advanced Functional Materials, 2015, 25(44): 6936-6947.

【106】Kang D H, Pae S R, Shim J, et al. an ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure[J]. Advanced Materials, 2016, 28(35): 7799-7806.

【107】Sun Z H, Aigouy L, Chen Z Y. Plasmonic-enhanced perovskite-graphene hybrid photodetectors[J]. Nanoscale, 2016, 8(14): 7377-7383.

【108】Wang Y S, Zhang Y P, Lu Y, et al. Hybrid graphene-perovskite phototransistors with ultrahigh responsivity and gain [J]. Advanced Optical Materials, 2015, 3(10): 1389-1396.

【109】Lee Y, Kwon J, Hwang E, et al. High-performance perovskite-graphene hybrid photodetector[J]. Advanced Materials, 2015, 27(1): 41-46.

【110】Dang V Q, Han G S, Trung T Q, et al. Methylammonium lead iodide perovskite-graphene hybrid channels in flexible broadband phototransistors[J]. Carbon, 2016, 105: 353-361.

【111】Chen C, Zhang X Q, Wu G, et al. Visible-light ultrasensitive solution-prepared layered organic-inorganic hybrid perovskite field-effect transistor[J]. Advanced Optical Materials, 2017, 5(2): 1600539.

【112】Lu Q R, Li J, Lian Z P, et al. CH3NH3PbI3 single crystal-based ambipolar field-effect transistor with ta2o5 as the top gate dielectric[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 249-254.

【113】Spina M, Náfrádi B, Tóháti H M, et al. Ultrasensitive 1D field-effect phototransistors: CH3NH3PbI3 nanowire sensitized individual carbon nanotubes[J]. Nanoscale, 2016, 8(9): 4888-4893.

【114】Spina M, Bonvin E, Sienkiewicz A, et al. Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels[J]. Scientific Reports, 2016, 6(1): 19834.

【115】Yan Y, Luo S. Photomultiplier tubes guide weak light detection[J]. Laser & Optoelectronics Progress, 2000, 37(2): 38-40, 12.
颜严, 罗山. 光电倍增管引导弱光探测[J]. 激光与光电子学进展, 2000, 37(2): 38-40, 12.

【116】Huo L Z, Tan H S, He R, et al. Research of blue-violet enhanced silicon photomultiplier[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110401.
霍林章, 谭何盛, 何燃, 等. 蓝紫光增强硅光电倍增器的研究[J]. 激光与光电子学进展, 2015, 52(11): 110401.

【117】Gao X Y, Zhang Y, Cui Y X, et al. Research progress in organic photomultiplication photodetector[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070001.
高秀云, 张叶, 崔艳霞, 等. 有机光电倍增探测器的研究进展[J]. 激光与光电子学进展, 2018, 55(7): 070001.

【118】Dong R, Fang Y J, Chae J, et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites[J]. Advanced Materials, 2015, 27(11): 1912-1918.

【119】Liu C, Peng H, Wang K, et al. PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors[J]. Nano Energy, 2016, 30: 27-35.

【120】Chen S, Teng C J, Zhang M, et al. A flexible UV-vis-NIR photodetector based on a perovskite/conjugated-polymer composite[J]. Advanced Materials, 2016, 28(28): 5969-5974.

【121】Gao T, Zhang Q, Chen J N, et al. Performance-enhancing broadband and flexible photodetectors based on perovskite/ZnO-nanowire hybrid structures[J]. Advanced Optical Materials, 2017, 5(12): 1700206.

【122】Higashi Y, Kim K S, Jeon H G, et al. Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system[J]. Journal of Applied Physics, 2010, 108(3): 034502.

【123】Dandin M, Abshire P, Smela E. Optical filtering technologies for integrated fluorescence sensors[J]. Lab on a Chip, 2007, 7(8): 955-977.

【124】Fu X, Guo K, Xiong S F, et al. Development of wide-band low-noise filter for solar blind detection system[J]. Chinese Journal of Lasers, 2017, 44(6): 0603002.
付秀华, 郭凯, 熊仕富, 等. 日盲探测宽波段低噪声滤波器件的研制[J]. 中国激光, 2017, 44(6): 0603002.

【125】Yu J C, Chen X, Wang Y, et al. A high-performance self-powered broadband photodetector based on a CH3NH3PbI3 perovskite/ZnO nanorod array heterostructure[J]. Journal of Materials Chemistry C, 2016, 4(30): 7302-7308.

【126】Cao M, Tian J Y, Cai Z, et al. Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector[J]. Applied Physics Letters, 2016, 109(23): 233303.

【127】Su L, Zhao Z X, Li H Y, et al. High-performance organolead halide perovskite-based self-powered triboelectric photodetector[J]. ACS Nano, 2015, 9(11): 11310-11316.

【128】Lu H, Tian W, Cao F R, et al. A self-powered and stable all-perovskite photodetector-solar cell nanosystem[J]. Advanced Functional Materials, 2016, 26(8): 1296-1302.

【129】Liu P, He X X, Ren J H, et al. organic-inorganic hybrid perovskite nanowire laser arrays[J]. ACS Nano, 2017, 11(6): 5766-5773.

【130】Cheng Z Y, Wang Z, Xing R B, et al. Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography[J]. Chemical Physics Letters, 2003, 376(3/4): 481-486.

【131】Luan S F, Cheng Z Y, Xing R B, et al. Patterning organic luminescent materials by solvent-assisted dewetting and polymer-bonding lithography[J]. Journal of Applied Physics, 2005, 97(8): 086102.

引用该论文

Liu Yanzhen,Li Guohui,Cui Yanxia,Ji Ting,Hao Yuying. Research Progress in Perovskite Photodetectors[J]. Laser & Optoelectronics Progress, 2019, 56(1): 010001

刘艳珍,李国辉,崔艳霞,冀婷,郝玉英. 钙钛矿光电探测器的研究进展[J]. 激光与光电子学进展, 2019, 56(1): 010001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF