首页 > 论文 > 激光与光电子学进展 > 56卷 > 1期(pp:11001--1)

一种基于超分辨率的叠栅条纹图像处理方法

Processing Method of Moiré Fringe Images Based on Super-Resolution Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对叠栅条纹图像在精密测量方面的应用需求, 提出了一种基于图像局部自相似性和去块效应后处理的超分辨率算法。该算法利用叠栅条纹图像的局部自相似性, 首先对原始低分辨率条纹图像插值, 得到初始高分辨率图像, 然后寻找各高分辨率图像块对应的低分辨率最优匹配块, 从高、低分辨率图像块对中提取先验知识, 完成单帧图像的超分辨率重建。本文算法对图像进行了块操作, 在重建结果中引入了块效应。针对该问题, 同时提出了一种能够快速消除块效应的后处理算法。结果表明, 将本文两种算法结合使用, 能够有效提高图像质量, 同时消除重建图像中块效应的影响。本文算法不需要借助外部图像, 计算复杂度低, 适用于叠栅条纹图像超分辨率重建。

Abstract

Aiming at the applications of moiré fringes in fine measurement, a super-resolution algorithm is proposed based on local self-similarity and deblocking post-processing. In this algorithm, with the local self-similarity of moiré fringes, the initial high-resolution images are first obtained through an interpolation of the original low-resolution images. Then the optimal matching low-resolution block corresponding to each high-resolution image block is searched. The prior knowledge is extracted from the high- and low-resolution image blocks and thus the super-resolution reconstruction of a single-frame image is realized. In addition, the blocking artifacts are introduced in the reconstructed results after the blocking operations. As for this problem, a post-processing algorithm for quickly eliminating blocking artifacts is simultaneously proposed. The results show that the combination of the proposed two algorithms can effectively improve the image quality and simultaneously eliminate the blocking artifacts in the reconstruction process of images. The algorithm does not relay on external images and has a low computational complexity, suitable for the super-resolution reconstruction of moiré fringe images.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop56.011001

所属栏目:图像处理

基金项目:吉林省重点科技攻关项目(20160204050GX, 20170204050GX)

收稿日期:2018-05-30

修改稿日期:2018-06-21

网络出版日期:2018-07-18

作者单位    点击查看

李默晶:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
王志乾:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
杨文昌:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
刘绍锦:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033

联系人作者:王志乾(wangzhiqian@ciomp.ac.cn)

【1】Qiao Y F, Wang C L, Li X R, et al. Measurement of torsion angular distortion based on moiré fringe[J]. Optics and Precision Engineering, 2008, 16(11): 2132-2139.
乔彦峰, 王成龙, 李向荣, 等. 莫尔条纹测量扭转变形角的方案研究[J]. 光学 精密工程, 2008, 16(11): 2132-2139.

【2】Lü Q, Li W H, Bayanheshig, et al. Interferometric precision displacement measurement system based on diffraction grating[J]. Chinese Optics, 2017, 10(1): 39-50.
吕强, 李文昊, 巴音贺希格, 等. 基于衍射光栅的干涉式精密位移测量系统[J]. 中国光学, 2017,10(1): 39-50.

【3】Chen J, Gao H B, Wang W G, et al. Methods and applications of image super-resolution restoration[J]. Laser & Optoelectronics Progress, 2015, 52(2): 020004.
陈健, 高慧斌, 王伟国, 等. 图像超分辨率复原方法及应用[J]. 激光与光电子学进展, 2015, 52(2): 020004.

【4】Weng J W, Tan S Y. Imaging resolution of self-interference incoherent digital holographic system[J]. Chinese Journal of Lasers, 2016, 43(6): 0609006.
翁嘉文, 谭穗妍. 自干涉非相干全息成像系统分辨率[J]. 中国激光, 2016, 43(6): 0609006.

【5】Yao Y, Qiao Y F, Zhong X, et al. Super-resolution reconstruction of staring imaging degraded model [J]. Acta Optica Sinica, 2017, 37(8): 0810003.
姚烨, 乔彦峰, 钟兴, 等. 凝视成像降质模型的超分辨率重建[J]. 光学学报, 2017, 37(8): 0810003.

【6】Tsai R T, Huang T S. Multiframe image restoration and registration[J]. Advances in Computer Vision and Image Processing, 1984, 1(7): 317-339.

【7】Tan Z, Xiangli B B, Lü Q B, et al. A sequence images super-resolution enhancement approach based on frequency-domain[J]. Acta Optica Sinica, 2017, 37(7): 0710001.
谭政, 相里斌, 吕群波, 等. 一种基于频域的序列图像超分辨率增强方法[J]. 光学学报, 2017, 37(7): 0710001.

【8】Freeman W T, Jones T R, Pasztor E C. Example-based super-resolution[J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65.

【9】Sun J, Xu Z B, Shum H Y. Gradient profile prior and its applications in image super-resolution and enhancement[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1529-1542.

【10】Chang H, Yeung D Y, Xiong Y M. Super-resolution through neighbor embedding[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, 1: 275-282.

【11】Gao X B, Zhang K B, Tao D C, et al. Joint learning for single-image super-resolution via a coupled constraint[J]. IEEE Transactions on Image Processing, 2012, 21(2): 469-480.

【12】Yang J, Wright J C, Huang T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.

【13】Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations[C]∥International Conferences on Curves and Surfaces, 2010: 711-730.

【14】Wang J J, Zhu S H, Gong Y H. Resolution enhancement based on learning the sparse association of image patches[J]. Pattern Recognition Letters, 2010, 31(1): 1-10.

【15】Suetake N, Sakano M, Uchino E. Image super-resolution based on local self-similarity[J]. Optical Review, 2008, 15(1): 26-30.

【16】Glasner D, Bagon S, Irani M. Super-resolution from a single image[C]∥IEEE International Conference on Computer Vision, 2009: 349-356.

【17】Lu X Q, Yuan H L, Yan P K, et al. Geometry constrained sparse coding for single image super-resolution[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2012: 1648-1655.

【18】Freedman G, Fattal R. Image and video upscaling from local-examples[J]. ACM Transactions on Graphics, 2011, 30(2): 12-22.

【19】Coudoux F X, Gazalet M, Corlay P. Reduction of blocking effect in DCT-coded images based on a visual perception: criterion[J]. Signal Processing Image Communication, 1998, 11(3): 179-186.

【20】Karunasekera S A, Kingsbury N G. A distortion measure for blocking artifacts in images based on human visual sensitivity[J]. IEEE Transactions on Image Processing, 1995, 4(6): 713-724.

【21】Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708.

【22】Mittal A, Soundararajan R, Bovik A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212.

【23】Moorthy A K, Bovik A C. Blind image quality assessment: from natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3350-3364.

引用该论文

Li Mojing,Wang Zhiqian,Yang Wenchang,Liu Shaojin. Processing Method of Moiré Fringe Images Based on Super-Resolution Technology[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011001

李默晶,王志乾,杨文昌,刘绍锦. 一种基于超分辨率的叠栅条纹图像处理方法[J]. 激光与光电子学进展, 2019, 56(1): 011001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF