首页 > 论文 > 激光与光电子学进展 > 56卷 > 1期(pp:11401--1)

大层厚316L选区激光熔化工艺优化及性能研究

Process Optimization and Performance Investigation in Selective Laser Melting of Large Layer-Thickness 316L Powder

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用选区激光熔化(SLM)技术对200 μm层厚的气雾化316L粉末进行单熔道及块体实验, 通过分析成型样件的致密度、微观组织、拉伸性能、缺陷机理等进行了工艺优化。结果表明, 当激光功率为400 W, 曝光时间为120~160 μs, 搭接率为50%~60%时, 成型样件的致密度可达99.99%。SLM成型过程中产生的未熔合缺陷可以通过调整工艺参数进行避免; 虽然微型孔洞及球化现象无法完全消除, 但通过缩短曝光时间可以减小球化尺寸。SLM成型样件的微观晶粒为等轴晶及柱状晶, 其拉伸性能良好, 屈服强度为530 MPa, 拉伸强度为635 MPa, 延伸率为31%。

Abstract

The single-scan track and block experiment of 200 μm large layer-thickness gas atomized 316L powder by the selective laser melting (SLM) technique is conducted. Through the analysis of densities, microstructures, tensile properties and defect mechanism of forming parts, the process is optimized. The results show that the density is up to 99.99% when the exposure time is 120-160 μs, the overlap rate is 50%-60% and laser power is 400 W. The unmelted defects occurred during the SLM process can be removed by the adjustment of process parameters. Although the micropores and balling defects cannot be completely eradicated, a short exposure time can be used to reduce the balling size. The equiaxed crystals and columnar crystals can be observed in the microstructures of samples. The yield strength, tensile strength and elongation rate of these samples are 530 MPa, 635 MPa and 31%, respectively, indicating that there exists a nice tensile property.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/lop56.011401

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(51505006)、2017学位与研究生教育资助项目(11000101010)、2018年研究生科研能力提升计划项目(号)

收稿日期:2018-06-05

修改稿日期:2018-07-13

网络出版日期:2018-07-18

作者单位    点击查看

杨锦:北京工商大学材料与机械工程学院, 北京 100048
刘玉德:北京工商大学材料与机械工程学院, 北京 100048
石文天:北京工商大学材料与机械工程学院, 北京 100048
张飞飞:北京工商大学材料与机械工程学院, 北京 100048
祁斌:北京工商大学材料与机械工程学院, 北京 100048
韩冬:北京工商大学材料与机械工程学院, 北京 100048

联系人作者:刘玉德(liu_yude@163.com)

【1】Francois M M, Sun A, King W E, et al. Modeling of additive manufacturing processes for metals: challenges and opportunities[J]. Current Opinion in Solid State and Materials Science, 2017,21(4): 198-206.

【2】Yang Y Q, Chen J, Song C H, et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011401.
杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018,55(1): 011401.

【3】Yang Y Q, Wang D, Wu W H. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(6): 0601007.
杨永强, 王迪, 吴伟辉. 金属零件选区激光熔化直接成型技术研究进展[J]. 中国激光, 2011, 38(6): 0601007.

【4】Wang D, YangY Q, Wu W H. Process optimization for 316L stainless steel by fiber laser selective melting[J]. Chinese Journal of Lasers, 2009, 36(12): 3233-3239.
王迪, 杨永强, 吴伟辉. 光纤激光选区熔化316L不锈钢工艺优化[J]. 中国激光, 2009, 36(12): 3233-3239.

【5】Rombouts M, Kruth J P, Froyen L, et al. Fundamentals of selective laser melting of alloyed steel powders[J]. CIRP Annals, 2006, 55(1): 188-192.

【6】Yadroitsev I, Bertrand Ph, Smurov I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253(19): 8064-8069.

【7】Yasa E, Kruth J P. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting[J]. Procedia Engineering, 2011, 19: 389-395.

【8】Cherry J A, Davies H M, Mehmood S, et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting[J]. The international Journal of Advanced Manufacturing Technology, 2015, 76(5/6/7/8): 869-879.

【9】Yang Y Q, Lu J B, Luo Z Y, et al. Accuracy and density optimization in directly fabricating customized orthodontic production by selective laser melting[J]. Rapid Prototyping Journal, 2012, 18(6): 482-489.

【10】Niendorf T, Leuders S, Riemer A, et al. Highly anisotropic steel processed by selective laser melting[J]. Metallurgical and Materials Transactions B, 2013, 44(4): 794-796.

【11】Sun Z J, Tan X P, Tor S B, et al. Selective laser melting of stainless steel 316L with low porosity and high build rates[J]. Materials & Design, 2016, 104: 197-204.

【12】Ma M M, Wang Z M, Gao M, et al. Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel[J]. Journal of Materials Processing Technology, 2015,215: 142-150.

【13】Shi X Z, Ma S Y, Liu C M, et al. Performance of high layer thickness in selective laser melting of Ti6Al4V[J]. Materials, 2016, 9(12): 975.

【14】Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016,117: 371-392.

【15】Li R D, Shi Y S, Wang Z G, et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting[J]. Applied Surface Science, 2010, 256(13): 4350-4356.

【16】Zhao S M, Shen X F, Yang J L, et al. Investigation of densification, microstructural and mechanical properties of water-atomized 316L stainless steel parts fabricated by selective laser melting[J]. Applied Laser, 2017, 37(3): 319-326.

【17】Frazier W E. Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928.

【18】Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: Materials and applications[J]. Applied Physics Reviews, 2015, 2(4): 041101.
赵曙明, 沈显峰, 杨家林, 等. 水雾化316L不锈钢选区激光熔化致密度与组织性能研究[J]. 应用激光, 2017, 37(3): 319-326.

【19】Wu W H, Yang Y Q, Wang D. Balling phenomenon in selective laser melting process[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(5): 110-115.
吴伟辉, 杨永强, 王迪. 选区激光熔化成型过程的球化现象[J]. 华南理工大学学报(自然科学版), 2010, 38(5): 110-115.

【20】Tolochko N K, Mozzharov S E, Yadroitsev I A, et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal, 2004, 10(2): 78-87.

【21】Khairallah S A, Anderson A T, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108: 36-45.

【22】Gunenthiram V, Peyre P, Schneider M, et al. Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel[J]. Journal of Laser Applications, 2017, 29(2): 022303.

【23】Zhang B C, Dembinski L, Coddet C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder[J]. Materials Science and Engineering: A, 2013,584: 21-31.

【24】Mirza F A, Chen D L. A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites[J]. Materials, 2015, 8(8): 5138-5153.

【25】Ahmadi A, Mirzaeifar R, Moghaddam N S, et al. Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: a computational framework[J]. Materials & Design, 2016, 112: 328-338.

【26】Mertens A I, Reginster S, Paydas H, et al. Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures[J]. Powder Metallurgy, 2014, 57(3): 184-189.

【27】Zhang K, Wang S J, Liu W J, et al. Characterization of stainless steel parts by Laser Metal Deposition Shaping[J]. Materials & Design, 2014, 55: 104-119.

引用该论文

Yang Jin,Liu Yude,Shi Wentian,Zhang Feifei,Qi Bin,Han Dong. Process Optimization and Performance Investigation in Selective Laser Melting of Large Layer-Thickness 316L Powder[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011401

杨锦,刘玉德,石文天,张飞飞,祁斌,韩冬. 大层厚316L选区激光熔化工艺优化及性能研究[J]. 激光与光电子学进展, 2019, 56(1): 011401

被引情况

【1】宗学文,高倩,周宏志,张佳亮,齐腾博. 体激光能量密度对选区激光熔化316L不锈钢各向异性的影响. 中国激光, 2019, 46(5): 502003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF