首页 > 论文 > 激光与光电子学进展 > 56卷 > 1期(pp:11501--1)

基于散斑视觉测量的叶片模型重构

Blades Model Reconstruction Based on Speckle Vision Measurement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

叶片是航空发动机的重要部件, 由于工作环境恶劣, 容易出现损坏。对损坏的叶片进行修复是比较经济的做法, 模型重构是航空发动机叶片修复的关键技术之一。为此提出了一种基于散斑视觉测量的叶片模型重构方法。采用散斑视觉系统采集叶片曲面散斑点; 通过散斑点立体匹配得到局部点云数据; 通过点云拼接得出叶片整体点云; 根据叶片点云曲率提取边界点, 通过三次B样条曲线对叶片点云边界点进行拟合, 得出叶片包络曲线; 利用包络曲线和点云重建叶片模型; 进行了实验验证, 证明了方法的可行性。

Abstract

The blade is an important part of aero engine. It is easy to be damaged due to the bad working environment. It is economical to repair the damaged blade, and the model reconstruction is one of the key technologies of aero-engine blade repair. A blade model reconstruction method based on speckle vision measurement is proposed. The speckle vision system is used to collect the speckle on blade surface, and the local point cloud data are obtained by speckle stereo matching. Then, the entire point cloud of the blade is obtained through the point cloud splicing, at the same time, the boundary points are extracted according to the curvature of the blade point cloud, and the boundary points of the blade point cloud are fitted by the cubic B-spline curve to obtain the envelope curve of the blade. The envelope curve and point cloud are used to reconstruct the blade model. Finally, the experimental verification of the method is given, and the feasibility of the method is proved.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN29

DOI:10.3788/lop56.011501

所属栏目:机器视觉

基金项目:国家自然科学基金民航联合基金(U1633104,U1533111)、数字制造装备与技术国家重点实验室开放课题(DMETKF2017018)、天津市自然科学基金科技特派员项目(17JCTPJC51800)、中央高校基本科研业务费(3122017017,3122017033)、精密测试及仪器国家重点实验室开放基金(pilab1707)、国家自然科学基金青年基金项目(51705518)

收稿日期:2018-06-07

修改稿日期:2018-07-04

网络出版日期:2018-07-18

作者单位    点击查看

王涛:中国民航大学航空工程学院, 天津 300300
李战:中国民航大学航空工程学院, 天津 300300
王盛:中国民航大学航空工程学院, 天津 300300
乔伟林:中国民航大学航空工程学院, 天津 300300
吴军:中国民航大学航空工程学院, 天津 300300

联系人作者:吴军(j_wu@cauc.edu.cn)

【1】Ding H P. Research on model reconstruction of aero-engine damaged blades and laser cladding[D]. Tianjin: Civil Aviation University of China, 2016: 1-6.
丁华鹏. 航空发动机受损叶片逆向重构与激光熔覆技术研究[D]. 天津: 中国民航大学, 2016: 1-6.

【2】Yu Z J, Song S T, Wang T, et al. Digital modeling of aircraft engine blade based on reverse engineering[J]. Machine Tool & Hydraulics, 2011, 39(17): 122-125.
于之靖, 宋四同, 王涛, 等. 基于逆向工程的航空发动机叶片数字化建模[J]. 机床与液压, 2011, 39(17): 122-125.

【3】Escamilla G A P, Kobayashi F, Otani Y. Three-dimensional surface measurement based on the projected defocused pattern technique using imaging fiber optics[J]. Optics Communications, 2017, 390: 57-60.

【4】Yu Z J, Ma K, Wang Z J, et al. Surface modeling method for aircraft engine blades by using speckle patterns based on the virtual stereo vision system[J]. Optics Communications, 2018, 411: 33-39.

【5】Bremer C. Adaptive Strategies for manufacturing and repair of blades and blisks[C]∥ASME Turbo Expo: Power for Land, Sea, & Air. 2000.

【6】Piya C, Wilson J M, Murugappan S, et al. Virtual repair: geometric reconstruction for remanufacturing gas turbine blades[C]∥ASME International Design Engineering Technical Conferences & Computers & Information in Engineering Conference, 2011: 895-904.

【7】Li Q D, Li W L, Zhou L P. A surface feature-preserving point cloud simplification method for aviation blades[J]. China Mechanical Engineering, 2014, 25(16): 2204-2212.
李启东, 李文龙, 周莉萍. 一种曲面特征保持的航空叶片点云精简方法[J]. 中国机械工程, 2014, 25(16): 2204-2212.

【8】Zheng J M, Li Z G, Chen X. Worn area modeling for automating the repair of turbine blades[J]. The International Journal of Advanced Manufacturing Technology, 2006, 29(9/10): 1062-1067.

【9】Gao J, Chen X, Yilmaz O, et al. An integrated adaptive repair solution for complex aerospace components through geometry reconstruction[J]. The International Journal of Advanced Manufacturing Technology, 2008, 36(11/12): 1170-1179.

【10】Zhao N, Li L Y, Liu J, et al. A three-dimensional reconstruction methodology for aeroengine blade welding repair[J]. Transactions of the China Welding Institution, 2014, 35(6): 73-76, 117.
赵娜, 李亮玉, 刘杰, 等. 飞机叶片焊接修复中的三维测量重构技术[J]. 焊接学报, 2014, 35(6): 73-76, 117.

【11】Wang S, Xu X. 3D reconstruction based on horopter[J]. Acta Optica Sinica, 2017, 37(5): 0515004.
王珊, 徐晓. 基于双目单视面的三维重建[J]. 光学学报, 2017, 37(5): 0515004.

【12】Cheng M J, Shen X J, Xiao J J, et al. Three-dimensional calibration of fisheye camera based on laser scanner[J]. Acta Optica Sinica, 2017, 37(3): 0315001.
程梦娇, 申夏晶, 肖江剑, 等. 基于激光扫描的鱼眼相机三维标定方法[J]. 光学学报, 2017, 37(3): 0315001.

【13】Zhang H Y, Yu Z J. Initial displacement estimation method for speckle image based on marker matching[J]. Acta Optica Sinica, 2017, 37(3): 0303001.
张红颖, 于之靖. 基于标志点匹配的散斑图像变形初值估计法[J]. 光学学报, 2017, 37(3): 0303001.

【14】Cai J,Huang P F. Research of a real-time feature point tracking method based on the combination of improved SURF and P-KLT algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1204-1214.
蔡佳, 黄攀峰. 基于改进SURF和P-KLT算法的特征点实时跟踪方法研究[J]. 航空学报, 2013, 34(5): 1204-1214.

【15】Yu Z J, Ma K, Wang Z J, et al. Marker matching method with improved KLT algorithm[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020301.
于之靖, 马凯, 王志军, 等. 采用改进KLT算法的标志点匹配方法[J]. 激光与光电子学进展, 2018, 55(2): 020301.

【16】Chen B, Sun T Q, Liu A X. Influence of speckle noise on image registration based on feature point matching[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121103.
陈波, 孙天齐, 刘爱新. 散斑噪声对基于特征点匹配的图像配准的影响[J]. 激光与光电子学进展, 2017, 54(12): 121103.

【17】Wang C B. Multi-view 3D reconstruction based on binocular stereo vision[D]. Quanzhou: Huaqiao University, 2013: 40-51.
王长波. 基于双目视觉的多角度三维重建[D]. 泉州: 华侨大学, 2013: 40-51.

【18】Wu Q Y, Zeng Z, Zhang B C, et al. A 360° three-dimensional measurement system and its calibration[J]. Chinese Journal of Lasers, 2017, 44(4): 0404002.
吴庆阳, 曾增, 张佰春, 等. 一种新的360°三维测量系统及标定技术[J]. 中国激光, 2017, 44(4): 0404002.

【19】Wang H, Wang L W, Wang T, et al. Method and implementation of remanufacture and repair of aircraft engine damaged blades[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 1036-1048.
王浩, 王立文, 王涛, 等. 航空发动机损伤叶片再制造修复方法与实现[J]. 航空学报, 2016, 37(3): 1036-1048.

【20】Huo H X. Large complex malleable cast a 3D-scanning point cloud data denoising and smoothing method research[D]. Shenyang: Shenyang University of Technology, 2017: 29-30.
霍洪旭. 大型复杂铸锻件三维扫描测量与数据处理方法研究[D]. 沈阳: 沈阳工业大学, 2017: 29-30.

引用该论文

Wang Tao,Li Zhan,Wang Sheng,Qiao Weilin,Wu Jun. Blades Model Reconstruction Based on Speckle Vision Measurement[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011501

王涛,李战,王盛,乔伟林,吴军. 基于散斑视觉测量的叶片模型重构[J]. 激光与光电子学进展, 2019, 56(1): 011501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF