首页 > 论文 > 激光与光电子学进展 > 56卷 > 1期(pp:12501--1)

横向激励下金属纳米棒聚合体的Fano共振

Fano Resonances in Metallic Nanorod Oligomer with Transverse Excitation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了玻璃基底上的边对边型纳米棒聚合体周期性阵列结构, 研究其磁共振机理, 并用以实现Fano型共振。在横向激励下, 即外加电场垂直于纳米棒长轴时, 平面型纳米棒三聚体可实现单次Fano共振, 而金属-绝缘体-金属型(MIM)纳米棒聚合体可实现双Fano共振。采用有限元法模拟分析了聚合体阵列在可见光至近红外波段内的近场电磁分布和远场消光谱, 研究了其共振峰的特性与实现机理。分析表明, 纳米棒局域表面等离激元共振模式的近场耦合与叠加, 激发其磁表面等离激元(MSPs), 从而得到Fano型共振。尤其MIM纳米棒的引入, 为双次乃至多次Fano共振的实现提供更多可能。所设计纳米棒聚合体阵列的Fano共振损耗小, 品质高, 其带宽仅为30~50 nm, 有望应用于多波长生化传感检测、光开关等器件中。

Abstract

The periodic arrays of edge-to-edge nanorod oligomer on glass substrate are designed to investigate the magnetic resonances and to realize the Fano resonances. With the transverse excitation, that is, the polarized electric field of the incident light is perpendicular to the long axis of the nanorods, the planar symmetric nanorod trimer can obtain a single Fano resonance, while the metal-insulator-metal (MIM) nanorod oligomer can obtain double Fano resonances. The near field electromagnetic distributions and far field extinction spectra of the nanorod arrays are analyzed in visible to the near-infrared regions using finite element method. And the characteristics of its resonance peaks and its realization mechanism are studied. The analysis shows that the near field coupling and superposition of the localized surface plasmon resonance mode of nanorods excite its magnetic surface plasmons (MSPs) to obtain the Fano resonances. In particular, the introduction of MIM nanorods provides more possibilities for the realization of double or even multiple Fano resonances. The Fano resonances of designed nanorod oligomer arrays have the advantages of low resonant loss and high quality with the bandwidth of 30 to 50 nm, which can be potentially used in multi-wavelength biosensor, optical switch and other devices.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O484.4

DOI:10.3788/lop56.012501

所属栏目:光电子学

基金项目:天津市教委科研计划项目(2017KJ252)

收稿日期:2018-06-14

修改稿日期:2018-07-12

网络出版日期:2018-07-18

作者单位    点击查看

刘菲:天津理工大学电气电子工程学院薄膜电子与通信器件天津市重点实验室, 天津 300384
张楷亮:天津理工大学电气电子工程学院薄膜电子与通信器件天津市重点实验室, 天津 300384

联系人作者:刘菲(feiliu@tju.edu.cn)

【1】Si G Y, Zhao Y H, Leong E, et al. Liquid-crystal-enabled active plasmonics: a review[J]. Materials, 2014, 7(2): 1296-1317.

【2】Liu F, Wong M M K, Chiu S K, et al. Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor[J]. Biosensors and Bioelectronics, 2014, 55: 141-148.

【3】Jiang S F, Kong F M, Li K, et al. Study of far-field directivity of optical dipole antenna[J]. Acta Physica Sinica, 2011, 60(4): 045203.
蒋双凤, 孔凡敏, 李康, 等. 光偶极天线的远场方向性研究[J]. 物理学报, 2011, 60(4): 045203.

【4】Haes A J, Zou S L, Schatz G C, et al. Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles[J]. The Journal of Physical Chemistry B, 2004, 108(22): 6961-6968.

【5】Guo Q B, Liu X F, Qiu J R. Research progress of ultrafast nonlinear optics and applications of nanostructures with localized plasmon resonance[J]. Chinese Journal of Lasers, 2017, 44(7): 0703005.
郭强兵, 刘小峰, 邱建荣. 局域表面等离子体纳米结构的超快非线性光学及其应用研究进展[J]. 中国激光, 2017, 44(7): 0703005.

【6】Liu F F, Zhang X P. Sensors based on metallic photonic structures integrated onto end facets of fibers[J]. Laser & Optoelectronics Progress, 2017, 54(2): 020001.
刘飞飞, 张新平. 光纤端面集成金属光子结构传感器[J]. 激光与光电子学进展, 2017, 54(2): 020001.

【7】Chen Y, Luo P, Tian Y N, et al. Fano resonance slow light characteristics of metal-dielectric-metal waveguide coupled ring cavity with metallic double-slit[J]. Acta Optica Sinica, 2017, 37(9): 0924002.
陈颖, 罗佩, 田亚宁, 等. 含金属双缝的金属-电介质-金属波导耦合环形腔Fano共振慢光特性研究[J]. 光学学报, 2017, 37(9): 0924002.

【8】Luk′yanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9): 707-715.

【9】Zhang S, Genov D A, Wang Y,et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.

【10】Hao F,Sonnefraud Y, van Dorpe P, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]. Nano Letters, 2008, 8(11): 3983-3988.

【11】Zhang S P, Bao K, Halas N J, et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 2011, 11(4): 1657-1663.

【12】Wang J Q, Fan C Z, He J N, et al. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity[J]. Optics Express, 2013, 21(2): 2236-2244.

【13】Liu S D, Yang Z, Liu R P, et al. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings[J]. ACS Nano, 2012, 6(7): 6260-6271.

【14】Verre R, Yang Z J, Shegai T, et al. Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers[J]. Nano Letters, 2015, 15(3): 1952-1958.

【15】Yang J, Rahmani M, Teng J H, et al. Magnetic-electric interference in metal-dielectric-metal oligomers: generation of magneto-electric Fano resonance[J]. Optical Materials Express, 2012, 2(10): 1407-1415.

【16】Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370.

【17】Liu F, Jin J. Double Fano resonances in plasmon coupling nanorods[J]. Journal of Optics, 2015, 17(5): 055004.

【18】Romero I, Aizpurua J, Bryant G W, et al. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers[J]. Optics Express, 2006, 14(21): 9988-9999.

【19】Chang W S, Lassiter J B, Swanglap P, et al. A plasmonic Fano switch[J]. Nano Letters, 2012, 12(9): 4977-4982.

引用该论文

Liu Fei,Zhang Kailiang. Fano Resonances in Metallic Nanorod Oligomer with Transverse Excitation[J]. Laser & Optoelectronics Progress, 2019, 56(1): 012501

刘菲,张楷亮. 横向激励下金属纳米棒聚合体的Fano共振[J]. 激光与光电子学进展, 2019, 56(1): 012501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF