首页 > 论文 > 激光与光电子学进展 > 56卷 > 1期(pp:11403--1)

选区激光熔化成形多孔Ti-6Al-4V合金力学性能研究

Mechanical Properties of Porous Ti-6Al-4V Titanium Alloys Fabricated by Selective Laser Melting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对Ti-6Al-4V合金植入体存在的应力屏蔽问题, 采用选区激光熔化技术成形了不同孔径和孔隙率的多孔Ti-6Al-4V合金结构, 对样品的相对密度、成形精度、微观组织、压缩性能和弹性模量等进行表征。结果表明, 原始打印态多孔Ti-6Al-4V合金结构的显微组织为细针状α′马氏体组织; 不同相对密度的多孔Ti-6Al-4V合金结构, 其相对密度从0.420升高到0.548时, 弹性模量从15.1 GPa升高到25.7 GPa, 抗压强度也从223 MPa升高到了352 MPa, 且弹性模量、抗压强度随相对密度变化的关系满足Gibson-Ashby模型。此外, 多孔Ti-6Al-4V合金压缩断裂发生在支杆连接处, 断口与水平方向约成45°夹角, 断裂方式为脆性断裂。

Abstract

The porous Ti-6Al-4V alloy structures with different pore sizes and porosity are fabricated by selective laser melting aiming at the problem of stress shielding existing in the Ti-6Al-4V alloy implants. In addition, the relative densities, molding precision, microstructures, compression properties and elastic moduli of different porous samples are characterized. The results show that the microstructures of the as-built porous structures are composed of fine needle α′ martensite phases. As for the porous Ti-6Al-4V alloy structures with deferent relative densities, when the relative density increases from 0.420 to 0.548, the elastic modulus increases from 15.1 GPa to 25.7 GPa, and the compressive strength increases from 223 MPa to 352 MPa. Moreover, the relationship of elastic modulus and compressive strength with relative density satisfies well with the Gibson-Ashby model. In addition, the compression fractures of porous Ti-6Al-4V alloys occur at the junction of struts. The angle between the fracture and the horizontal direction is about 45° and the fracture mode is a brittle one.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG115.5;TG113.25

DOI:10.3788/lop56.011403

所属栏目:激光器与激光光学

基金项目:广东省科学院实施创新驱动发展能力建设专项资金项目(2016GDASPT-0206, 2017GDASCX-0202, 2017GDASCX-0111, 2018GDASCX-0402, 2018GDASCX-0946, 2018GDASCX-0111)、广州市科技计划项目(201604016109, 201704030111, 201510010095)、广东省省级科技计划项目(2015B010122004, 2015B090920003, 2016B070701020, 2016B090916003, 2017A070702016, 2017B030314122, 2016A030312015, 2017A070701027)

收稿日期:2018-05-28

修改稿日期:2018-06-28

网络出版日期:2018-07-18

作者单位    点击查看

李卿:华南理工大学材料科学与工程学院, 广东 广州 510640广东省新材料研究所广东省现代表面工程技术重点实验室, 现代材料表面工程技术国家工程实验室, 广东 广州 510651
赵国瑞:广东省新材料研究所广东省现代表面工程技术重点实验室, 现代材料表面工程技术国家工程实验室, 广东 广州 510651
闫星辰:广东省新材料研究所广东省现代表面工程技术重点实验室, 现代材料表面工程技术国家工程实验室, 广东 广州 510651
马文有:广东省新材料研究所广东省现代表面工程技术重点实验室, 现代材料表面工程技术国家工程实验室, 广东 广州 510651
余红雅:华南理工大学材料科学与工程学院, 广东 广州 510640
刘敏:广东省新材料研究所广东省现代表面工程技术重点实验室, 现代材料表面工程技术国家工程实验室, 广东 广州 510651

联系人作者:刘敏(liumin@gdas.gd.cn)

【1】Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303-3312.

【2】Vandenbroucke B, Kruth J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 2007, 13(4): 196-203.

【3】Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 2016, 43(4): 0403003.
陈德宁, 刘婷婷, 廖文和, 等. 扫描策略对金属粉末选区激光熔化温度场的影响[J]. 中国激光, 2016, 43(4): 0403003.

【4】Cox S C, Jamshidi P, Eisenstein N M, et al. Adding functionality with additive manufacturing: fabrication of titanium-based antibiotic eluting implants[J]. Materials Science and Engineering: C, 2016, 64: 407-415.

【5】Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders[J]. Rapid Prototyping Journal, 2010, 16(6): 450-459.

【6】Pattanayak D K, Fukuda A, Matsushita T, et al. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments[J]. Acta Biomaterialia, 2011, 7(3): 1398-1406.

【7】Lin H, Yang Y Q, Zhang G Q, et al. Tribological performance of medical CoCrMo alloy fabricated by selective laser melting[J]. Acta Optica Sinica, 2016, 36(11): 1114003.
林辉, 杨永强, 张国庆, 等. 激光选区熔化医用钴铬钼合金的摩擦性能[J]. 光学学报, 2016, 36(11): 1114003.

【8】Goharian A, Abdullah M R. Bioinert metals (stainless steel, titanium, cobalt chromium)[M]. Amsterdam: Elsevier, 2017: 115-142.

【9】Heinl P, Müller L, Krner C, et al. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J]. Acta Biomaterialia, 2008, 4(5): 1536-1544.

【10】Bandyopadhyay A, Espana F, Balla V K, et al. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants[J]. Acta Biomaterialia, 2010, 6(4): 1640-1648.

【11】Murr L E, Amato K N, Li S J, et al. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(7): 1396-1411.

【12】Wang X J, Li Y C, Hodgson P D, et al. Nano- and macro-scale characterisation of the mechanical properties of bovine bone[J]. Materials Forum, 2007, 31:156-159.

【13】Li Y H, Yang C, Zhao H D, et al. New developments of Ti-based alloys for biomedical applications[J]. Materials, 2014, 7(3): 1709-1800.

【14】Wolff J. The law of bone remodeling[M]. Heidelberg: Springer, 1987.

【15】Li J P, Habibovic P, van den Doel M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 2007, 28(18): 2810-2820.

【16】Otsuki B, Takemoto M, Fujibayashi S, et al. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants[J]. Biomaterials, 2006, 27(35): 5892-5900.

【17】Xiu P, Jia Z J, Lv J, et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked Bone/Implant interface[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 17964-17975.

【18】Gibson L J, Ashby M F. The structure of cellular solids[M]. Gibson L J, Ashby M F. eds. Cellular Solids. Cambridge: Cambridge University Press, 15-51.

【19】Ahmadi S M, Hedayati R, Ashok Kumar Jain R K, et al. Effects of laser processing parameters on the mechanical properties, topology, and microstructure of additively manufactured porous metallic biomaterials: a vector-based approach[J]. Materials & Design, 2017, 134: 234-243.

【20】Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment[J]. Materials Science and Engineering: C, 2016, 59: 690-701.

【21】Sun J F, Yang Y Q, Wang D. Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting[J]. Advances in Mechanical Engineering, 2012, 4: 427386.

【22】Choy S Y, Sun C N, Leong K F, et al. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: design, orientation and density[J]. Additive Manufacturing, 2017, 16: 213-224.

【23】Ajdari A, Jahromi B H, Papadopoulos J, et al. Hierarchical honeycombs with tailorable properties[J]. International Journal of Solids and Structures, 2012, 49(11/12): 1413-1419.

【24】Li F P, Li J S, Kou H C, et al. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications[J]. Materials Science and Engineering: C, 2016, 60: 485-488.

【25】Ryan G E, Pandit A S, Apatsidis D P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique[J]. Biomaterials, 2008, 29(27): 3625-3635.

【26】Ashby M F, Evans T, Fleck N A, et al. Metal foams: a design guide[M]. Amsterdam: Elsevier, 2000.

【27】Hedayati R, Ahmadi S M, Lietaert K, et al. Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79: 254-263.

【28】Chen S Y, Huang J C, Pan C T, et al. Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2017, 713: 248-254.

【29】Yan C Z, Hao L, Hussein A, et al. Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering[J]. Journal of Materials Processing Technology, 2014, 214(4): 856-864.

【30】Ghouse S, Babu S, van Arkel R J, et al. The influence of laser parameters and scanning strategies on the mechanical properties of a stochastic porous material[J]. Materials & Design, 2017, 131: 498-508.

【31】Zhang B, Li D C, Cao Y, et al. Error analysis in formation direction of selective laser melting based on powder melting[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011406.
张博, 李涤尘, 曹毅, 等. 基于粉体熔化的选区激光熔化成型方向误差分析[J]. 激光与光电子学进展, 2017, 54(1): 011406.

【32】Cheng X Y, Li S J, Murr L E, et al. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 16: 153-162.

【33】Wauthle R, Vrancken B, Beynaerts B, et al. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures[J]. Additive Manufacturing, 2015, 5: 77-84.

【34】Ahmadi S M, Ashok Kumar Jain R K, Zadpoor A A, et al. Effects of heat treatment on microstructure and mechanical behaviour of additive manufactured porous Ti6Al4V[J]. IOP Conference Series: Materials Science and Engineering, 2017, 293: 012009.

【35】Zhao Y Q, Chen Y N, Chen X M, et al. Phase transformation and heat treatment of titanium alloys[M]. Changsha: Central South University Press, 2012.
赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.

【36】Alabort E, Putman D, Reed R C. Superplasticity in Ti-6Al-4V: characterisation, modelling and applications[J]. Acta Materialia, 2015, 95: 428-442.

【37】Gibson L J, Ashby M F. The mechanics of three-dimensional cellular materials[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1982, 382(1782): 43-59.

【38】Zysset P K, Guo X E, Hoffler C E, et al. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur[J]. Journal of Biomechanics, 1999, 32(10): 1005-1012.

【39】Gibson L J. Mechanical behavior of metallic foams[J]. Annual Review of Materials Science, 2000, 30(1): 191-227.

【40】Kadkhodapour J, Montazerian H, Darabi A C, et al. The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 70: 28-42.

【41】Qiu C L, Yue S, Adkins N J E, et al. Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting[J]. Materials Science and Engineering: A, 2015, 628: 188-197.

【42】Ashby M F. The properties of foams and lattices[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2006, 364(1838): 15-30.

【43】Choy S Y, Sun C-N, Leong K F, et al. Compressive properties of functionally graded lattice structures manufactured by selective laser melting[J]. Materials & Design, 2017, 131: 112-120.

引用该论文

Li Qing,Zhao Guorui,Yan Xingchen,Ma Wenyou,Yu Hongya,Liu Min. Mechanical Properties of Porous Ti-6Al-4V Titanium Alloys Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011403

李卿,赵国瑞,闫星辰,马文有,余红雅,刘敏. 选区激光熔化成形多孔Ti-6Al-4V合金力学性能研究[J]. 激光与光电子学进展, 2019, 56(1): 011403

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF