首页 > 论文 > 激光与光电子学进展 > 56卷 > 1期(pp:11204--1)

基于光纤时间频率传递的多望远镜激光测距时间同步研究

Time Synchronization in Laser Ranging with Multi-Receiving Telescopes Based on Fiber-Time-Frequency Transfer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

多台望远镜同时进行信号接收可有效增加激光回波数, 提升目标激光信号探测能力。多望远镜接收测量系统间的时间同步精度, 直接影响测量数据误差。为此, 提出了光纤时间频率传递在多望远镜测量系统中的时间频率同步方法, 并测试了光纤时间频率传递系统的装置性能, 其时间同步精度达62 ps, 变化率每天约为4 ps, 满足卫星激光测量要求。基于双望远镜信号接收激光测距系统及光纤时间频率传递装置, 开展了单望远镜激光发射、双望远镜信号接收的卫星激光观测实验。与卫星精密轨道相比, 双望远镜联合获得的卫星距离测量外符误差小于6 cm, 可应用于卫星精密定轨。实验结果验证了光纤时间频率传递方法在多望远镜信号接收激光测距应用中的可行性。

Abstract

The number of laser echoes can be obviously increased with multi-receiving telescopes to simultaneously receive signals, and the detection ability of target laser signals can be enhanced. However, the precision of time and frequency synchronization directly influences the errors of laser ranging data by means of multi-receiving telescopes. Thus the time and frequency synchronization method for the laser ranging system with multi-receiving telescopes is described based on fiber-time-frequency transfer. The performance of a fiber-time-frequency transfer device is tested and the results show that its time synchronization precision is 62 ps and the linear slope is 4 ps a day, which meet the requirements of laser ranging to satellites. The experiments of laser ranging to satellites are performed with single-transmitting telescope and dual-receiving telescopes based on the laser ranging system with dual-receiving telescopes and the fiber-time-frequency transfer device. Compared with that of the precise orbits of satellites, the error of ranging data derived from the dual-receiving telescopes is less than 6 cm, indicating that it can be used for the precise orbit determination of satellites. Moreover, the experimental results confirm the application feasibility of the fiber-time-frequency transfer method in laser ranging with multi-receiving telescopes.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/lop56.011204

所属栏目:仪器,测量与计量

收稿日期:2018-06-07

修改稿日期:2018-07-07

网络出版日期:2018-07-20

作者单位    点击查看

张海峰:中国科学院上海天文台, 上海 200030中国科学院空间目标与碎片观测重点实验室, 江苏 南京 210008
邓华荣:中国科学院上海天文台, 上海 200030
龙明亮:中国科学院上海天文台, 上海 200030
程志恩:中国科学院上海天文台, 上海 200030
张忠萍:中国科学院上海天文台, 上海 200030中国科学院空间目标与碎片观测重点实验室, 江苏 南京 210008
赵罡:中国科学院上海天文台, 上海 200030
王家亮:中国科学院上海光学精密机械研究所, 上海 201800

联系人作者:张海峰(hfzhang@shao.ac.cn)

【1】Degnan J J. Millimeter accuracy satellite laser ranging: a review[J]. Contributions of Space Geodesy to Geodynamics: Technology, Geodynamics Series, 1993, 25:133-162.

【2】Lucchesi D M, Anselmo L, Bassan M, et al. Testing the gravitational interaction in the field of the earth via satellite laser ranging and the laser ranged satellites experiment (LARASE)[J]. Classical and Quantum Gravity, 2015, 32(15): 155012.

【3】Bonin J A, Chambers D P, Cheng M K. Using satellite laser ranging to measure ice mass change in Greenland and Antarctica[J]. The Cryosphere, 2018, 12(1): 71-79.

【4】Kirchner G, Hausleitner W, Cristea E. Ajisai spin parameter determination using Graz kilohertz satellite laser ranging data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 201-205.

【5】Zhang Z P, Cheng Z E, Zhang H F, et al. Global laser ranging observation of Beidou satellites and data application[J]. Chinese Journal of Lasers, 2017, 44(4): 0404004.
张忠萍, 程志恩, 张海峰, 等. 北斗卫星全球激光测距观测及数据应用[J]. 中国激光, 2017, 44(4): 0404004.

【6】Bennett J C, Sang J, Smith C H, et al. Accurate orbit predictions for debris orbit manoeuvre using ground-based lasers[J]. Advances in Space Research, 2013, 52(11): 1876-1887.

【7】Coyle D B, Stysley P R, McGarry J F, et al. Adapting a ground-based laser ranging system at NASA-GSFC for identification and tracking of orbital debris[J]. Proceedings of SPIE, 2013, 8731: 1-7.

【8】Vilnrotter V, Lau C W, Srinivasan M, et al. Optical array receiver for communication through atmospheric turbulence[J]. Journal of Lightwave Technology, 2005, 23(4): 1664-1675.

【9】Zhang Z P, Zhang H F, Deng H R, et al. Experiment of laser ranging to space debris by using two receiving telescopes[J]. Infrared and Laser Engineering, 2016, 45(1): 0102002.
张忠萍, 张海峰, 邓华荣, 等. 双望远镜的空间碎片激光测距试验研究[J]. 红外与激光工程, 2016, 45(1): 0102002.

【10】Kodet J, Schreiber U, Eckl J, et al. Local ties control in application of laser time transfer[C]∥Proceedings of 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium, 2013: 81-85.

【11】Gao C, Wang B, Bai Y, et al. Fiber based time and frequency synchronization system[J]. Science & Technology Review, 2014, 32(34): 41-46.
高超, 王波, 白钰, 等. 基于光纤链路的高精度时间频率传输与同步[J]. 科技导报, 2014, 32(34): 41-46.

【12】Li M. Research on improving ranging precision method in dual one-way ranging and time synchronization system[D]. Xi′an: National Time Service Center, Chinese Academy of Sciences, 2014.
李梦. 双向测距与时间同步系统提高测量精度的方法研究[D]. 西安: 中国科学院国家授时中心, 2014.

【13】Cheng N, Chen W, Liu Q, et al. Time synchronization technique for joint time and frequency transfer via optical fiber[J]. Chinese Journal of Lasers, 2015, 42(7): 0705002.
程楠, 陈炜, 刘琴, 等. 光纤时间频率同时传递系统中时间同步方法的研究[J]. 中国激光, 2015, 42(7): 0705002.

【14】Wang L D, Wu G L, Shen J G, et al. Simultaneous transfer of time and frequency over 100 km fiber link[J]. Acta Optica Sinica, 2015, 35(4): 0406004.
王灵东, 吴龟灵, 沈建国, 等. 基于100 km光纤链路的时间和频率同时传递[J]. 光学学报, 2015, 35(4): 0406004.

【15】Liu T, Liu J, Deng X, et al. Research on fiber-based time and frequency transfer[J]. Journal of Time and Frequency, 2016, 39(3): 207-215.
刘涛, 刘杰, 邓雪, 等. 光纤时间频率信号传递研究[J]. 时间频率学报, 2016, 39(3): 207-215.

【16】Chen F X, Zhao K, Zhou X, et al. High-precision long-haul fiber-optic time transfer between multi stations[J]. Acta Physica Sinica, 2017, 66(20): 200701.
陈法喜, 赵侃, 周旭, 等. 长距离多站点高精度光纤时间同步[J]. 物理学报, 2017, 66(20): 200701.

【17】Zhang Z P, Zhang H F, Wu Z B, et al. kHz repetition satellite laser ranging system with high precision and measuring results[J]. Chinese Science Bulletin, 2011, 56(15): 1177-1183.
张忠萍, 张海峰, 吴志波, 等. 高精度千赫兹重复频率卫星激光测距系统及实测结果[J]. 科学通报, 2011, 56(15): 1177-1183.

【18】Qian B C, Zhou H N, Pan H J, et al. Observing the collision of comet SL9 with Jupiter using a 1.56 m telescope[J]. Acta Astrophysica Sinica, 1995, 15(1): 99-100.
钱伯辰, 周洪楠, 潘红鉴, 等. 1.56 m望远镜观测彗-木相撞概况[J]. 天体物理学报, 1995, 15(1):99-100.

【19】Zhang H F, Zhang Z P, Qin S, et al. The functions of satellites position prediction and data pre-processing software for Shanghai SLR station [J]. Annals of Shanghai Observatory Academia Sinica, 2009, 30: 153-156.
张海峰, 张忠萍, 秦思, 等. 上海天文台卫星激光测距的台站预报和数据预处理软件的功能[J]. 中国科学院上海天文台年刊, 2009, 30: 153-156.

【20】Huang C, Feng C G. SLR data processing and its software implementation[M]. Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences, 2003.
黄珹, 冯初刚. SLR数据处理及其软件实现[M]. 上海: 中国科学院上海天文台, 2003.

【21】Zhao G. Studies on applications of SLR precise orbit determination in China′s satellite projects[D]. Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences, 2013: 18-33.
赵罡. 激光测距精密定轨在中国卫星工程中的应用研究[D]. 上海: 中国科学院上海天文台, 2013: 18-33.

引用该论文

Zhang Haifeng,Deng Huarong,Long Mingliang,Cheng Zhien,Zhang Zhongping,Zhao Gang,Wang Jialiang. Time Synchronization in Laser Ranging with Multi-Receiving Telescopes Based on Fiber-Time-Frequency Transfer[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011204

张海峰,邓华荣,龙明亮,程志恩,张忠萍,赵罡,王家亮. 基于光纤时间频率传递的多望远镜激光测距时间同步研究[J]. 激光与光电子学进展, 2019, 56(1): 011204

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF