首页 > 论文 > 激光与光电子学进展 > 56卷 > 1期(pp:10004--1)

太赫兹量子级联激光器阵列耦合的研究进展

Research Progress on Array Coupling of Terahertz Quantum Cascade Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

太赫兹量子级联激光器(THz QCL)是一种紧凑、相干的固体连续辐射源, 具有重要的潜在应用价值, 是当前国际上研究的热点之一。目前, THz QCL面临进一步提高输出功率的问题, 而阵列耦合是突破这一瓶颈的有效途径, 因此, 相关研究就显得尤为重要。概述了THz QCL的现有阵列耦合结构, 并总结和讨论了THz QCL阵列研究现状及其未来可能的发展方向。

Abstract

Terahertz quantum cascade laser (THz QCL) is a kind of compact and coherent solid continuous wave source with important potential applications, and it is one of the international research hotspots. At present, the research on array coupling is particularly important since it is an effective solution to the problems and difficulties in further increasing output power for THz QCLs. The current structures of THz QCL array coupling are summarized and analyzed. The research status and possible future development directions of THz QCL array are summarized and discussed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN25

DOI:10.3788/lop56.010004

所属栏目:综述

基金项目:国家科技部重大仪器专项(2011YQ130018)

收稿日期:2018-07-06

修改稿日期:2018-08-28

网络出版日期:2018-09-14

作者单位    点击查看

罗佳文:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621999
王雪敏:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621999
沈昌乐:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621999
蒋涛:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621999
湛治强:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621999
邹蕊矫:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621999
彭丽萍:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621999
黎维华:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621999
吴卫东:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621999

联系人作者:王雪敏(wangxuemin75@sohu.com)

【1】Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1): 26-33.

【2】Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

【3】Yao J Q. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2010, 22(6): 703-707.
姚建铨. 太赫兹技术及其应用[J]. 重庆邮电大学学报(自然科学版), 2010, 22(6): 703-707.

【4】Yang M W, Ji H B, Tan Z Y, et al. Terahertz joint analyzer with imaging and spectrum detection[J]. Acta Optica Sinica, 2016, 36(6): 0611004.
杨旻蔚, 季海兵, 谭智勇, 等. 成像与成谱联动的太赫兹分析检测仪[J]. 光学学报, 2016, 36(6): 0611004.

【5】Li M Q, Tan Z Y, Qiu F C, et al. Fast reflective scanning imaging based on terahertz quantum-cascade laser[J]. Acta Optica Sinica, 2017, 37(6): 0611004.
李孟奇, 谭智勇, 邱付成, 等. 基于太赫兹量子级联激光器的反射式快速扫描成像[J]. 光学学报, 2017, 37(6): 0611004.

【6】Liu Y, Zhao G Z, Shen Y C. Polarization imaging detection based on the continuous terahertz wave[J]. Chinese Journal of Lasers, 2016, 43(1): 0111001.
刘影, 赵国忠, 申彦春. 连续太赫兹波偏振成像检测[J]. 中国激光, 2016, 43(1): 0111001.

【7】Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553-556.

【8】Khler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417: 156-159.

【9】Scalari G, Ajili L, Faist J. Far-infrared (λ87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K[J]. Applied Physics Letters, 2003, 82(19): 3165-3167.

【10】Liu H C, Wchter M, Ban D, et al. Effect of doping concentration on the performance of terahertz quantum-cascade lasers[J]. Applied Physics Letters, 2005, 87(14): 141102.

【11】Degl′Innocenti R, Shah Y D, Jessop D S, et al. Hollow metallic waveguides integrated with terahertz quantum cascade lasers[J]. Optics Express, 2014, 22(20): 24439-24449.

【12】Han Y J, Li L H, Zhu J, et al. Silver-based surface plasmon waveguide for terahertz quantum cascade lasers[J]. Optics Express, 2018, 26(4): 3814-3827.

【13】Zhu H, Zhu H Q, Wang F F, et al. Terahertz master-oscillator power-amplifier quantum cascade laser with a grating coupler of extremely low reflectivity[J]. Optics Express, 2018, 26(2): 1942-1953.

【14】Belkin M A, Capasso F. New frontiers in quantum cascade lasers: high performance room temperature terahertz sources[J]. Physica Scripta, 2015, 90(11): 118002.

【15】Wienold M, Rben B, Schrottke L, et al. High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback[J]. Optics Express, 2014, 22(3): 3334-3348.

【16】Wang X M, Shen C L, Jiang T, et al. High-power terahertz quantum cascade lasers with~0.23 W in continuous wave mode[J]. AIP Advances, 2016, 6(7): 075210.

【17】Fathololoumi S, Dupont E, Chan C W I, et al. Terahertz quantum cascade lasers operating up to~200 K with optimized oscillator strength and improved injection tunneling[J]. Optics Express, 2012, 20(4): 3866-3876.

【18】Li L H,Chen L, Zhu J X, et al. Terahertz quantum cascade lasers with >1 W output powers[J]. Electronics Letters, 2014, 50(4): 309-311.

【19】Li L H, Zhu J X, Chen L, et al. The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers[J]. Optics Express, 2015, 23(3): 2720-2729.

【20】Sun J N, Sun W J, Zhao L P, et al. Study of the factors influencing the properties of AlGaN/GaN quantum cascade lasers[J]. Acta Optica Sinica, 2012, 32(2): 0214002.
孙京南, 孙文军, 赵立萍, 等. 影响AlGaN/GaN量子级联激光器性能的因素研究[J]. 光学学报, 2012, 32(2): 0214002.

【21】Lee H K, Chung K S, Yu J S, et al. Thermal analysis of buried heterostructure quantum cascade lasers for long-wavelength infrared emission using 2D anisotropic heat-dissipation model[J]. Physica Status Solidi (a), 2009, 206(2): 356-362.

【22】Lee H K, Yu J S. Thermal analysis of short wavelength InGaAs/InAlAs quantum cascade lasers[J]. Solid-State Electronics, 2010, 54(8): 769-776.

【23】Lee H K, Chung K S, Yu J S. Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation[J]. Applied Physics B, 2008, 93(4): 779-786.

【24】Chaparala S C, Xie F, Caneau C, et al. Design guidelines for efficient thermal management of mid-infrared quantum cascade lasers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(12): 1975-1982.

【25】Pierscinski K, Pierciska D, Iwiska M, et al. Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers[J]. Journal of Applied Physics, 2012, 112(4): 043112.

【26】Krall M, Bachmann D, Deutsch C, et al. All-electrical thermal monitoring of terahertz quantum cascade lasers[J]. IEEE Photonics Technology Letters, 2014, 26(14): 1470-1473.

【27】Bowden B, Harrington J A, Mitrofanov O. Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings[J]. Applied Physics Letters, 2008, 93(18): 181104.

【28】Vitiello M S, Xu J H, Kumar M, et al. High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides[J]. Optics Express, 2011, 19(2): 1122-1130.

【29】Vitiello M S, Xu J H, Beltram F, et al. Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide[J]. Journal of Applied Physics, 2011, 110(6): 063112.

【30】Navarro-Cía M, Vitiello M S, Bledt C M, et al. Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5~5 THz band[J]. Optics Express, 2013, 21(20): 23748-23755.

【31】Wallis R, Degl′Innocenti R, Jessop D S, et al. Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides[J]. Optics Express, 2015, 23(20): 26276-26287.

【32】Danylov A A, Waldman J, Goyette T M, et al. Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide[J]. Applied Optics, 2007, 46(22): 5051-5055.

【33】Patimisco P, Spagnolo V, Vitiello M S, et al. Coupling external cavity mid-IR quantum cascade lasers with low loss hollow metallic/dielectric waveguides[J]. Applied Physics B, 2012, 108(2): 255-260.

【34】Sampaolo A, Patimisco P, Kriesel J M, et al. Single mode operation with mid-IR hollow fibers in the range 5.1~10.5 μm[J]. Optics Express, 2015, 23(1): 195-204.

【35】Patimisco P, Sampaolo A, Giglio M, et al. Hollow core waveguide as mid-infrared laser modal beam filter[J]. Journal of Applied Physics, 2015, 118(11): 113102.

【36】Kirch J D, Chang C C, Boyle C, et al. 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers[J]. Applied Physics Letters, 2015, 106(6): 061113.

【37】Lyakh A, Maulini R, Tsekoun A, et al. Continuous wave operation of buried heterostructure 4.6 μm quantum cascade laser Y-junctions and tree arrays[J]. Optics Express, 2014, 22(1): 1203-1208.

【38】Wang L, Zhang J C, Jia Z W, et al. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity[J]. Optics Express, 2016, 24(26): 30275-30281.

【39】de Naurois G M, Carras M, Simozrag B, et al. Coherent quantum cascade laser micro-stripe arrays[J]. AIP Advances, 2011, 1(3): 032165.

【40】Botez D, Peterson G. Modes of phase-locked diode-laser arrays of closely spaced antiguides[J]. Electronics Letters, 1988, 24(16): 1042-1044.

【41】Chen K L, Wang S. Single-lobe symmetric coupled laser arrays[J]. Electronics Letters, 1985, 21(8): 347-349.

【42】Katz J, Margalit S, Yariv A. Diffraction coupled phase-locked semiconductor laser array[J]. Applied Physics Letters, 1983, 42(7): 554-556.

【43】Ackley D E. Single longitudinal mode operation of high power multiple-stripe injection lasers[J]. Applied Physics Letters, 1983, 42(2): 152-154.

【44】Kao T Y, Hu Q, Reno J L. Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers[J]. Applied Physics Letters, 2010, 96(10): 101106.

【45】Kao T Y, Hu Q, Reno J L. Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers[J]. Optics Letters, 2012, 37(11): 2070-2072.

【46】Bosco L, Bonzon C, Ohtani K, et al. A patch-array antenna single-mode low electrical dissipation continuous wave terahertz quantum cascade laser[J]. Applied Physics Letters, 2016, 109(20): 201103.

【47】De Freez R K, Bossert D J, Yu N, et al. Spectral and picosecond temporal properties of flared guide Y-coupled phase-locked laser arrays[J]. Applied Physics Letters, 1988, 53(24): 2380-2382.

【48】H N, Phillips M C, Qiao H, et al. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared[J]. Optics Letters, 2006, 31(12): 1860-1862.

【49】Tsay C, Toor F, Gmachl C F, et al. Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits[J]. Optics Letters, 2010, 35(20): 3324-3326.

【50】Tsay C, Mujagi E, Madsen C K, et al. Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides[J]. Optics Express, 2010, 18(15): 15523-15530.

【51】Chen H T, Lu H, Azad A K, et al. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays[J]. Optics Express, 2008, 16(11): 7641-7648.

【52】Miyamaru F, Hangyo M. Finite size effect of transmission property for metal hole arrays in subterahertz region[J]. Applied Physics Letters, 2004, 84(15): 2742-2744.

【53】Gerhard M, Theuer M, Beigang R. Coupling into tapered metal parallel plate waveguides using a focused terahertz beam[J]. Applied Physics Letters, 2012, 101(4): 041109.

【54】Kim S H, Lee E S, Ji Y B, et al. Improvement of THz coupling using a tapered parallel-plate waveguide[J]. Optics Express, 2010, 18(2): 1289-1295.

【55】Iwaszczuk K, Andryieuski A, Lavrinenko A, et al. Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide[J]. Optics Express, 2012, 20(8): 8344-8355.

引用该论文

Luo Jiawen,Wang Xuemin,Shen Changle,Jiang Tao,Zhan Zhiqiang,Zou Ruijiao,Peng Liping,Li Weihua,Wu Weidong. Research Progress on Array Coupling of Terahertz Quantum Cascade Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(1): 010004

罗佳文,王雪敏,沈昌乐,蒋涛,湛治强,邹蕊矫,彭丽萍,黎维华,吴卫东. 太赫兹量子级联激光器阵列耦合的研究进展[J]. 激光与光电子学进展, 2019, 56(1): 010004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF