首页 > 论文 > 光学学报 > 39卷 > 1期(pp:115003--1)

基于非下采样轮廓小波变换增强的从粗到精的显著性检测

Coarse-to-Fine Saliency Detection Based on Non-Subsampled Contourlet Transform Enhancement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着机器视觉和人工智能的快速发展, 视觉注意机制作为机器视觉的重要组成部分,受到越来越多的关注。提出一种建立在非下采样轮廓小波变换(NSCT)基础上的从粗到精的显著性检测方法, 该方法作为一种基于频域分析的显著性检测算法, 能够充分利用图像的低频和高频信息, 并能抑制光照对检测造成的影响。模型首先对输入图像进行非下采样轮廓小波分解, 对低频分量进行Retinex增强以改善图像亮度的均匀性, 从而抑制光照对显著性检测带来的影响, 随后对其进行粗糙显著性检测; 对高频分量进行非线性增强以抑制噪声并增强细节, 重构得到高频特征图, 在低频粗糙显著图的范围内对高频特征图进行全局和局部的显著性分析; 最后经过融合得到精细显著图。在三个数据集上进行对比实验, 验证了所提算法的可行性和有效性。

Abstract

With the rapid developments of machine vision and artificial intelligence, the visual attention mechanism, as an important part of machine vision, has attracted more and more attention. A coarse-to-fine saliency detection method is proposed based on non-subsampled contourlet transform (NSCT), which, as a frequency-domain based saliency detection method, can make full use of the low-frequency and high-frequency information of images and suppress the influence of illumination on detection as well. First, the non-subsampled contourlet transform is used to decompose the input images. The low-frequency components are enhanced by Retinex to ameliorate the brightness uniformity of images, and thus the influence of illumination on the saliency detection is suppressed. Then, the coarse saliency detection is performed. The high-frequency components are enhanced nonlinearly to suppress noises and enhance details, and thus the high-frequency feature maps are obtained via reconstruction. The global and local saliency analyses of the high-frequency feature maps are performed within the scope of low-frequency coarse saliency maps. Finally, the fine saliency maps are obtained via fusion. The contrast experiments are carried out on three datasets and the results confirm the feasibility and effectiveness of the proposed method.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/aos201939.0115003

所属栏目:机器视觉

基金项目:国家自然科学基金(61673244)、山东省重点研发计划(2017GGX10137)

收稿日期:2018-06-19

修改稿日期:2018-07-21

网络出版日期:2018-08-23

作者单位    点击查看

刘冬梅:山东大学控制科学与工程学院, 山东 济南 250061
常发亮:山东大学控制科学与工程学院, 山东 济南 250061

联系人作者:常发亮(flchang@sdu.edu.cn)

【1】Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.

【2】Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1597-1604.

【3】Cheng M M, Mitra N J, Huang X L, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569-582.

【4】Li G, Yu Y. Visual saliency detection based on multiscale deep CNN features[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5012-5024.

【5】Liu F, Shen T S, Lou S L, et al. Deep network saliency detection based on global model and local optimization[J]. Acta Optica Sinica, 2017, 37(12): 1215005.
刘峰, 沈同圣, 娄树理, 等. 全局模型和局部优化的深度网络显著性检测[J]. 光学学报, 2017, 37(12): 1215005.

【6】Guo C, Zhang L. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE transactions on Image Processing, 2010, 19(1): 185-198.

【7】Imamoglu N, Lin W S, Fang Y M. A saliency detection model using low-level features based on wavelet transform[J]. IEEE Transactions on Multimedia, 2013, 15(1): 96-105.

【8】Da Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101.

【9】Land E H, McCann J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1-11.

【10】Yang A P, Bai H H. Nighttime image defogging based on the theory of Retinex and dark channel prior[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041002.
杨爱萍, 白煌煌. 基于Retinex理论和暗通道先验的夜间图像去雾算法[J]. 激光与光电子学进展, 2017, 54(4): 041002.

【11】Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.

【12】Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image processing, 1997, 6(7): 965-976.

【13】Wu Y Q, Shi J P. Image enhancement in non-subsampled Contourlet transform domain based on multi-scale Retinex[J]. Acta Optica Sinica, 2015, 35(3): 0310002.
吴一全, 史骏鹏. 基于多尺度Retinex的非下采样Contourlet域图像增强[J]. 光学学报, 2015, 35(3): 0310002.

【14】Harel J, Koch C, Perona P. Graph-based visual saliency[C]. Advances in Neural Information Processing Systems, 2007: 545-552.

【15】Liu D M, Chang F L, Liu C S. Salient object detection fusing global and local information based on nonsubsampled contourlet transform[J]. Journal of the Optical Society of America A, 2016, 33(8): 1430-1441.

【16】Chang S G, Yu B,Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Transactions on Image Processing, 2000, 9(9):1522-1531.

【17】Zhang L, Zhu Z D. A novel nonlinear method for image enhancement based on non-subsampled contourlet transform[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1786-1790.
张林, 朱兆达. 基于非降采样 Contourlet 变换的非线性图像增强新算法[J]. 电子与信息学报, 2009, 31(8): 1786-1790.

【18】Bruce N D B, Tsotsos J K. Saliency, attention, and visual search: An information theoretic approach[J]. Journal of Vision, 2009, 9(3): 5.

【19】Wang Z S, Li B X. A two-stage approach to saliency detection in images[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2008: 965-968.

【20】Liu T, Yuan Z J, Sun J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367.

【21】Hou X, Zhang L. Saliency detection:a spectral residual approach[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2007: 9738156.

【22】Li J, Levine M D, An X J, et al. Visual saliency based on scale-space analysis in the frequency domain[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 996-1010.

引用该论文

Liu Dongmei,Chang Faliang. Coarse-to-Fine Saliency Detection Based on Non-Subsampled Contourlet Transform Enhancement[J]. Acta Optica Sinica, 2019, 39(1): 0115003

刘冬梅,常发亮. 基于非下采样轮廓小波变换增强的从粗到精的显著性检测[J]. 光学学报, 2019, 39(1): 0115003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF