首页 > 论文 > 光学学报 > 39卷 > 1期(pp:106001--1)

基于相位解调的双光束薄膜干涉型光纤传声器

Double-Beam Thin-Film Interferometric Fiber Microphone Based on Phase Demodulation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对基于相位解调的双光束薄膜干涉型光纤传声器的特性展开了研究, 仿真分析了三路信号的直流分项、交流分项以及相位差对双光束薄膜干涉型光纤传声器输出性能的影响。采用对比法, 并通过实验研究了基于相位解调的双光束薄膜干涉型光纤传声器的输出特性, 实现了灵敏度为193 mV/Pa@1 kHz、频率响应为200 Hz~4 kHz@±3 dB的声信号测量。本研究能够很好地应用于声探测、语音识别等领域。

Abstract

The performances of a double-beam thin-film interferometric fiber (DBTFIF) microphone based on phase demodulation is studied. The effects of the direct current (DC) subentry, alternating current (AC) subentry and phase difference of three interference signals on the output performances of this DBTFIF microphone are analyzed by simulation. Through the comparison method, the output performances of this DBTFIF microphone based on phase demodulation are studied experimentally as well. The experimental results show that the measurement of acoustic signals with a sensitivity of about 193 mV/Pa at 1 kHz and the frequency response ranging from 200 Hz to 4 kHz with a fluctuation of about ±3 dB can both be achieved. This research can be well used in the fields of acoustic detection, voice recognition, and so on.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN29

DOI:10.3788/aos201939.0106001

所属栏目:光纤光学与光通信

基金项目:中国电科联合基金

收稿日期:2018-06-20

修改稿日期:2018-07-20

网络出版日期:2018-08-23

作者单位    点击查看

周瑜:中国电子科技集团公司第三研究所, 北京 100015哈尔滨工程大学水声工程学院, 黑龙江 哈尔滨 150001
刘超:中国电子科技集团公司第三研究所, 北京 100015
王坤博:中国电子科技集团公司第三研究所, 北京 100015
魏晓村:中国电子科技集团公司第三研究所, 北京 100015

联系人作者:周瑜(zycetc3@163.com)

【1】Wang X H, Zhang W C, Zhao H, et al. Impact of liquid insulation on characteristic parameters of fiberabry-erot partial discharge induced ultrasound sensor[J]. Acta Optica Sinica, 2018, 38(4): 0406005.
王学会, 张伟超, 赵洪, 等. 液体绝缘对光纤法布里-珀罗局放超声传感器特性参数影响[J]. 光学学报, 2018, 38(4): 0406005.

【2】Chen K, Yuan S, Gong Z F, et al. Ultra-high sensitive photoacoustic spectrometer for trace gas detection based on fiber-optic acoustic sensors[J]. Acta Optica Sinica, 2018, 38(3): 0328015.
陈珂, 袁帅, 宫振峰, 等. 基于光纤声波传感的超高灵敏度光声光谱微量气体检测[J]. 光学学报, 2018, 38(3): 0328015.

【3】Ding P, Dong X P. Theoretical and experimental research on fiber-optic microphone using multimode fiber lens[J]. Laser & Optoelectronics Progress, 2012, 49(6): 060603.
丁朋, 董小鹏. 采用多模光纤透镜的光纤麦克风理论与实验研究[J]. 激光与光电子学进展, 2012, 49(6): 060603.

【4】Bandutunga C P, Fleddermann R, Gray M B, et al. All-optical low noise fiber Bragg grating microphone[J]. Applied Optics, 2016, 55(21): 5570-5574.

【5】Wu D F, Jia B. Theoretical and experimental research of all-fiber microphone based on M-z interferometer[J]. Chinese Journal of Sensors and Actuators, 2007, 20(7): 1528-1530.
吴东方, 贾波. 基于M-Z动态干涉仪的全光纤麦克风研究[J]. 传感技术学报, 2007, 20(7): 1528-1530.

【6】Liu L, Lu P, Liao H, et al. Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm[J]. IEEE Sensors Journal, 2016, 16(9): 3054-3058.

【7】Wang Q, Yu Q. Polymer diaphragm based sensitive fiber optic Fabry-Perot acoustic sensor[J]. Chinese Optics Letters, 2010, 8(3): 266-269.

【8】Ma J, Xuan H F, Ho H L, et al. Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm[J]. IEEE Photonics Technology Letters, 2013, 25(10): 932-935.

【9】Liu L, Lu P, Wang S, et al. UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing[J]. IEEE Photonics Journal, 2016, 8(1): 6800709.

【10】Liu B, Lin J, Wang J, et al. MEMS-based high-sensitivity Fabry-Perot acoustic sensor with a 45° angled fiber[J]. IEEE Photonics Technology Letters, 2016, 28(5): 581-584.

【11】Wang W, Wu N, Tian Y, et al. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm[J]. Optics Express, 2010, 18(9): 9006-9014.

【12】Wang K B, Zhou Y, Liu C, et al. The F-P interferometric fiber optic microphone with intensity demodulation[J]. Journal of Applied Acoustics, 2017, 36(5): 438-444.
王坤博, 周瑜, 刘超, 等. 强度解调的F-P干涉型光纤传声器[J]. 应用声学, 2017, 36(5): 438-444.

【13】Mao X F, Tian X R, Zhou X L, et al. Characteristics of a fiber-optical Fabry-Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism[J]. Optical Engineering, 2015, 54(4): 046107.

【14】Schmidt M, Fürstenau N. Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation[J]. Optics Letters, 1999, 24(9): 599-601.

【15】Jiang Y, Chen S F. Direct demodulation for signal from fiber grating sensors by interferometer based on 3×3 coupler[J]. Acta Optica Sinica, 2004, 24(11): 1487-1490.
江毅, 陈淑芬. 用3×3耦合器的干涉仪直接解调光纤光栅传感器的信号[J]. 光学学报, 2004, 24(11): 1487-1490.

【16】Jiang Y. Passive interrogation of an extrinsic Fabry-Pérot interferometer using a three-wavelength method[J]. Optical Engineering, 2009, 48(6): 064401.

【17】Chen W M, Lei X H, Zhang W, et al. Recent progress of optical fiberFabry-Perot sensors[J]. Acta Optica Sinca, 2018, 38(3): 0328010.
陈伟民, 雷小华, 张伟, 等. 光纤法布里-珀罗传感器研究进展[J]. 光学学报, 2018, 38(3): 0328010.

引用该论文

Zhou Yu,Liu Chao,Wang Kunbo,Wei Xiaocun. Double-Beam Thin-Film Interferometric Fiber Microphone Based on Phase Demodulation[J]. Acta Optica Sinica, 2019, 39(1): 0106001

周瑜,刘超,王坤博,魏晓村. 基于相位解调的双光束薄膜干涉型光纤传声器[J]. 光学学报, 2019, 39(1): 0106001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF