首页 > 论文 > 光学学报 > 39卷 > 1期(pp:124001--1)

涂覆石墨烯的三根电介质纳米线波导的模式特性

Mode Characteristics of Waveguides Based on Three Graphene-Coated Dielectric Nanowires

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用多极方法, 通过改变工作频率、中间纳米线半径、中间纳米线高度、水平方向上纳米线之间的距离以及石墨烯的费米能, 对涂覆石墨烯的三根轴心非共面的电介质纳米线波导所支持的5种低阶模的有效折射率实部和传播长度进行分析。当工作频率从30 THz增加到40 THz时, 有效折射率实部增大, 传播长度减小。当中间纳米线的半径从20 nm增加到55 nm时, 有效折射率的实部增大, 传播长度变化各不相同。当中间纳米线的高度从0增加到100 nm时, 有效折射率的实部减小, 除了模式5外, 其他模式的传播长度都增大。当水平方向上纳米线之间的距离从160 nm增加到200 nm, 石墨烯的费米能从0.4 eV增加到0.8 eV时, 有效折射率的实部减小, 传播长度增大。

Abstract

We propose a waveguide based on three graphene-coated dielectric nanowires with a non-coplanar axis using the multipole method, and analyze the real part of effective refractive index and propagation length of five supported low-order modes by changing the operating frequency, radius and height of the central nanowires, the horizontal space between the nanowires, and the Fermi energy of graphene. When the operating frequency increases from 30 THz to 40 THz, the real part of the effective refractive index increases, whereas the propagation length decreases. When the radius of the central nanowire increases from 20 nm to 55 nm, the real part of effective refractive index increases; however, the corresponding propagation length varies. When the height of the central nanowire increases from 0 to 100 nm, the real part of effective refractive index decreases, whereas the propagation length increases, except for that of mode 5. When the horizontal space between the nanowires increases from 160 nm to 200 nm or the Fermi energy increases from 0.4 eV to 0.8 eV, the propagation length increases, whereas the real part of the effective refractive index decreases.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431

DOI:10.3788/aos201939.0124001

所属栏目:表面光学

基金项目:国家自然科学基金(61178013, 61172045)、国家基础科学人才培养基金(J1103210)

收稿日期:2018-07-17

修改稿日期:2018-08-08

网络出版日期:2018-08-28

作者单位    点击查看

卫壮志:山西大学物理电子工程学院, 山西 太原 030006
薛文瑞:山西大学物理电子工程学院, 山西 太原 030006
彭艳玲:山西大学物理电子工程学院, 山西 太原 030006
程鑫:山西大学物理电子工程学院, 山西 太原 030006
李昌勇:山西大学量子光学与光量子器件国家重点实验室, 激光光谱研究所, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006

联系人作者:薛文瑞(wrxue@sxu.edu.cn)

【1】Liao L, Lin Y C, Bao M Q, et al. High-speed graphene transistors with a self-aligned nanowire gate[J]. Nature, 2010, 467(7313): 305-308.

【2】Lin Y M,Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327(5966): 662.

【3】Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

【4】Loh K P, Bao Q L, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications[J]. Nature Chemistry, 2010, 2(12): 1015-1024.

【5】Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

【6】Wang F, Zhang Y B, Tian C S, et al. Gate-variable optical transitions in graphene[J]. Science, 2008, 320(5873): 206-209.

【7】Ju L,Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10): 630-634.

【8】Tian Z H, Si C F, Qu W S, et al. High-performance organic photovoltaics using solution-processed graphene oxide[J]. Acta Optica Sinica, 2017, 37(4): 0416001.
田正浩, 司长峰, 屈文山, 等. 基于溶液加工氧化石墨烯的高性能有机太阳能电池[J]. 光学学报, 2017, 37(4): 0416001.

【9】Geng L, Xie Y N, Yuan Y. Graphene-based antenna with reconfigurable radiation pattern in teraherz[J]. Laser and Optoelectrinics Progress, 2017, 54(3): 031602.
耿莉, 谢亚楠, 原媛. 基于石墨烯的太赫兹方向图可重构天线[J]. 激光与光电子学进展, 2017, 54(3): 031602.

【10】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

【11】Xu W, Zhu Z H, Liu K, et al. Dielectric loaded graphene plasmon waveguide[J]. Optics Express, 2015, 23(4): 5147-5153.

【12】Lao J E, Tao J, Wang Q J, et al. Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators[J]. Laser & Photonics Reviews, 2014, 8(4): 569-574.

【13】Dai Y Y, Zhu X L, Mortensen N A, et al. Nanofocusing in a tapered graphene plasmonic waveguide[J]. Journal of Optics, 2015, 17(6): 065002.

【14】Liu P H, Zhang X Z, Ma Z H, et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 2013, 21(26): 32432-32440.

【15】He S L, Zhang X Z, He Y R. Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI[J]. Optics Express, 2013, 21(25): 30664-30673.

【16】Yan H G, Low T, Zhu W J, et al. Damping pathways of mid-infrared plasmons in graphene nanostructures[J]. Nature Photonics, 2013, 7(5): 394-399.

【17】Gao Y X, Ren G B, Zhu B F, et al. Single-mode graphene-coated nanowire plasmonic waveguide[J]. Optics Letters, 2014, 39(20): 5909-5912.

【18】Yang J F, Yang J J, Deng W, et al. Transmission properties and molecular sensing application of CGPW[J]. Optics Express, 2015, 23(25): 32289-32299.

【19】Xing R, Jian S S. Numerical analysis on tunable multilayer nanoring waveguide[J]. IEEE Photonics Technology Letters, 2017, 29(12): 967-970.

【20】Zhu B F, Ren G B, Yang Y, et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 2015, 10(4): 839-845.

【21】Xing R, Jian S S. Numerical analysis on the multilayer nanoring waveguide pair[J]. IEEE Photonics Technology Letters, 2016, 28(24): 2779-2782.

【22】Wei Z Z, Xue W R, Peng Y L, et al. Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires[J]. Acta Physica Sinica, 2018, 67(10): 108101.
卫壮志, 薛文瑞, 彭艳玲, 等. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析[J]. 物理学报, 2018, 67(10): 108101.

【23】Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 2014, 5: 3069.

【24】Yang H B, Qiu M, Li Q. Identification and control of multiple leaky plasmon modes in silver nanowires[J]. Laser & Photonics Reviews, 2016, 10(2): 278-286.

【25】Wu X R, Huang C R, Xu K, et al. Mode-division multiplexing for silicon photonic network-on-chip[J]. Journal of Lightwave Technology, 2017, 35(15): 3223-3228.

【26】Bao Q L, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694.

【27】Nikitin A Y, Guinea F, García-Vidal F J, et al. Fields radiated by a nanoemitter in a graphene sheet[J]. Physical Review B, 2011, 84(19): 195446.

【28】Wijngaard W. Guided normal modes of two parallel circular dielectric rods[J]. Journal of the Optical Society of America, 1973, 63(8): 944-950.

【29】Wijngaard W. Some normal modes of an infinite hexagonal array of identical circular dielectric rods[J]. Journal of the Optical Society of America, 1974, 64(8): 1136-1144.

【30】Huang H S, Chang H C. Analysis of equilateral three-core fibers by circular harmonics expansion method[J]. Journal of Lightwave Technology, 1990, 8(6): 945-952.

【31】Lo K M, McPhedran R C, Bassett I M, et al. An electromagnetic theory of dielectric waveguides with multiple embedded cylinders[J]. Journal of Lightwave Technology, 1994, 12(3): 396-410.

【32】White T P, Kuhlmey B T, McPhedran R C, et al. Multipole method for microstructured optical fibers I Formulation[J]. Journal of the Optical Society of America B, 2002, 19(10): 2322-2330.

【33】Kuhlmey B T, White T P, Renversez G, et al. Multipole method for microstructured optical fibers II Implementation and results[J]. Journal of the Optical Society of America B, 2002, 19(10): 2331-2340.

引用该论文

Wei Zhuangzhi,Xue Wenrui,Peng Yanling,Cheng Xin,Li Changyong. Mode Characteristics of Waveguides Based on Three Graphene-Coated Dielectric Nanowires[J]. Acta Optica Sinica, 2019, 39(1): 0124001

卫壮志,薛文瑞,彭艳玲,程鑫,李昌勇. 涂覆石墨烯的三根电介质纳米线波导的模式特性[J]. 光学学报, 2019, 39(1): 0124001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF